

Suzana Moreira Avila Beneveli

Controle Híbrido para Atenuação de Vibrações em Edifícios

Tese de Doutorado

Tese apresentada ao Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio como parte dos requisitos para obtenção do título de Doutor em Engenharia Civil. Área de Concentração: Estruturas

Orientador: Paulo Batista Gonçalves

Rio de Janeiro Agosto de 2002 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

Suzana Moreira Avila Beneveli

Controle hibrido para atenuação de vibrações em edifícios

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Paulo B. Goncalves

Prof. Paulo B. Gonçalves Orientador Departamento de Engenharia Civil – PUC-Rio

Carlos Magluta Prof. COPPE/UFRJ

Prof./Fernando Venancio Filho

Prof./Fernando Venancio Filho Pesquisador FAPERJ

Prof. João Luis P. Roehl Departamento de Engenharia Civil – PUC-Rio

Prof. Raul Rosas e Silva Departamento de Engenharia Civil – PUC-Rio

Prof. Ney Augusto Dumont

do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 23 de agosto de 2002

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador

Suzana Moreira Avila Beneveli

Graduou-se em Engenharia Civil na Universidade de Brasília em 1993. Concluiu o curso de Mestrado em Estruturas no Departamento de Engenharia Civil da Universidade de Brasília em 1997. Participou de diversos congressos na área de engenharia estrutural. Área de pesquisa e interesse acadêmico: Dinâmica Estrutural e Controle de Vibrações.

Ficha Catalográfica
Beneveli, Suzana Moreira Avila
Controle híbrido para atenuação de vibrações em edifícios / Suzana Moreira Avila Beneveli; orientador: Paulo Batista Gonçalves. Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2002
xxxi., 230f.: il. ;30 cm
1. Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil
Inclui referências bibliográficas
 Engenharia Civil – Teses. 2. Dinâmica Estrutural. Controle de Vibrações. 4. Edifícios Altos. I. Gonçalves, P. B. (Paulo Batista). II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD: 624

Dedico esta tese a Paulo, Nilda, Simone e ao meu querido Rodrigo, com todo o amor

Agradecimentos

Ao meu orientador Professor Paulo Batista Gonçalves pelo incentivo e parceria fundamentais para realização deste trabalho.

Aos professores do Departamento de Engenharia Civil da PUC-Rio pelos ensinamentos transmitidos, de forma especial ao professor João Luis Pascal Roehl e, também, ao Professor Mauro Speranza Neto do Departamento de Engenharia Mecânica da PUC-Rio e à Professora de francês Angela Perricone do Departamento de Letras da PUC-Rio.

Aos funcionários do Departamento de Engenharia Civil da PUC-Rio, especialmente a Ana Roxo.

Ás minhas amigas Anna Paula e Suzana Costa, vocês me ajudaram muito.

A Laura pela amizade.

Aos colegas Zenon, Salete e Regina pela amizade e companheirismo e pelo apoio fundamental quando cheguei na PUC.

A Osvaldo Casares Pinto e Donald Mark Santee pela gentileza em contribuir em algumas das etapas deste trabalho.

Aos meus queridos pais Paulo e Nilda e a minha querida irmã Simone, pelo apoio em todos os momentos, pelo amor e pelo carinho, pela oportunidade de realizar mais esse sonho.

Ao meu querido Rodrigo por todo seu amor que encheu a minha vida de felicidade.

A Capes pelo apoio financeiro.

A Deus, eu Te agradeço Senhor porque Me Amas e Estivestes ao meu lado sempre, Me Ajudando, Me Iluminando, Me Perdoando e Tornando possível mais essa vitória.

Resumo

Beneveli, Suzana Moreira Avila; Gonçalves, Paulo Batista (Orientador). **Controle híbrido para atenuação de vibrações em edifícios.** Rio de Janeiro, 2002. 261p. Tese de Doutorado – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

No presente trabalho estuda-se a aplicação do controle estrutural na proteção de estruturas submetidas a carregamentos dinâmicos contra níveis de vibração indesejáveis que possam causar desconforto e, até mesmo, comprometer a segurança e integridade da edificação. Os três tipos de controle estrutural, passivo, ativo e híbrido, são analisados de forma a evidenciar as vantagens do uso do controle híbrido. O mecanismo de controle utilizado é o denominado amortecedor de massa sintonizado (AMS), devido à sua vasta aplicação na Engenharia Civil, tendo uma grande quantidade sido instalada em edifícios, pontes e chaminés industriais para controle de vibrações causadas pelo vento. Verifica-se a influência da não-linearidade da rigidez do AMS no comportamento do sistema principal. A utilização de amortecedores de massa sintonizados múltiplos é também estudada como uma forma de vencer certas limitações quanto à robustez deste tipo de sistema e melhorar sua performance. Analisa-se por fim o comportamento e eficiência do amortecedor de massa híbrido (AMH), em relação ao AMS passivo. Para cálculo da força de controle são utilizados os seguintes algoritmos: controle ótimo linear clássico, controle ótimo instantâneo e controle ótimo não-linear. Uma estratégia para definição das matrizes de ponderação, utilizadas no algoritmo de controle ótimo instantâneo, que minimizem a amplitude da resposta harmônica permanente é apresentada. Exemplos numéricos são apresentados ao longo de todo o trabalho. Verifica-se que a utilização do controle híbrido é mais eficiente que os controles passivo e ativo isolados, requerendo forças de magnitude inferiores, o que reduz bastante o custo deste tipo de sistema. O sistema de controle híbrido se mostrou eficiente na redução de vibrações causadas por carregamentos cujas freqüências eram diversas das consideradas no projeto do sistema de controle passivo. Verificou-se, ainda que o mesmo se comportou de forma satisfatória no caso de discrepância na freqüência natural da estrutura.

Palavras-chave

Controle estrutural; amortecedor de massa sintonizado; controle híbrido; dinâmica estrutural; amortecedor de massa híbrido

Abstract

Beneveli, Suzana Moreira Avila; Gonçalves, Paulo Batista (Advisor). **Hybrid** control for reducing building vibrations. Rio de Janeiro, 2002. 261p. DSc.Thesis – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

In this work the use of structural control is studied to protect dynamically loaded building structures against undesirable vibration levels, which can cause human discomfort and, even more, compromise the building safety and integrity. The three types of structural control, passive, ative and hybrid, are analysed to show the advantages of hybrid control in reducing undesirable vibration levels. The chosen control mechanism is the so called tuned mass damper (TMD), due to its large application in Civil Engineering, having a great number of these devices been installed in buildings, bridges and industrial chimneys to control structural vibrations induced by wind loads. It is also verified the influence of TMD non linear stiffness on the main system behaviour. The use of multiple tuned mass dampers is studied as a possible way of improving the TMD robustness and performance. The hybrid mass damper (HMD) behaviour and efficiency comparing to the passive mass damper is analysed in detail. To calculate the control force the following control algorithms are used: classical optimum linear control, instantaneous optimum control and non-linear optimum control. A strategy to define the weighting matrices used in the instantaneous optimum control algorithm that minimizes the harmonic response amplitude is presented. Several numerical examples are presented aalong the work. The results show that the hybrid control is more efficient that the passive or active control used separately, requiring smaller forces reducing in this way the cost of the control system. The hybrid control system showed to be more efficient in reducing vibrations caused by loadings which had different frequencies from that considered on the passive control design. Moreover it was shown that hybrid control has a satisfactory perfomance when discrepancies in natural frequency occur.

Keywords

Structural control; tuned mass damper; hybrid control; structural dynamics; hybrid mass damper

SUMÁRIO

1. Intro	odução	32
1.1 C	ontrole Passivo	33
1.2 C	controle Ativo	36
1.3 C	ontrole Híbrido	40
1.4 C	ontrole Semi-ativo	40
1.5 Ir	nportância, Objetivos e Descrição do Trabalho	41
2. Am	ortecedor de Massa Sintonizado	45
2.1	Introdução	45
2.2	Princípios Básicos	47
2.3	Sistemas com Vários Graus de Liberdade	51
2.3.1	Sistema completo	51
2.3.2	Sistema reduzido a um grau de liberdade	52
2.4	Exemplos Numéricos	53
	Exemplo 2.1	53
	Exemplo 2.2	61
	Exemplo 2.3	65
	Exemplo 2.4	67
2.5	AMS com Rigidez Não-linear	73
2.5.1	Sistema amortecido	73
2.5.2	Sistema não-amortecido	76
2.5.3	Exemplo numérico	77
3. Am	ortecedores de Massa Sintonizados Múltiplos (AMSM)	97
3.1	Introdução	97
3.2	Modelo Estrutural	98
3.3	Equações de Movimento e Funções de Resposta em	
	Freqüência	99

3.4	Otimização dos Parâmetros e Estudo do Efeito da		
	Interligação Entre as Massas	101	
3.5	Exemplo - Aplicação a um Edifício Alto: o Citycorp Center 12		
3.6	Influência do número de amortecedores n _a	125	
3.7	Resposta da Estrutura com AMSM Sujeito a Carregamentos		
	com Perturbações Aleatórias	129	
3.7.1	Força não-determinística	129	
3.7.2	Simulação de um processo estocástico ergódico de banda		
	limitada, com valor esperado zero e função densidade		
	espectral especificada	131	
3.7.3	Resultados numéricos	136	
4.Cont	role Ativo	144	
4.1	Conceitos Básicos	144	
4.1.1	Equações de Estado	146	
4.1.2	Estabilidade	146	
4.1.3	Controlabilidade e Observabilidade	147	
4.2	Considerações Práticas	148	
4.3	Atuadores	150	
4.4	Algoritmos	151	
4.4.1	Algoritmo de controle linear clássico	151	
4.4.2	Algoritmos para solução das equações de Ricatti	154	
4.4.3	Algoritmo de controle ótimo instantâneo	156	
4.5	Exemplo Numérico	160	
4.6	Controle Não-linear	169	
4.6.1	Introdução	169	
4.6.2	Controle ótimo não-linear – representação indicial	169	
4.6.3	Controle ótimo não-linear para sistemas lineares	174	
4.6.4	Exemplo Numérico	175	
5. Con	trole Híbrido: Amortecedor de Massa Híbrido (AMH)	177	
5.1	Introdução	177	
5.2	Amortecedor de Massa Híbrido (AMH)	178	

5.3	Equações de Movimento	180
5.4	Exemplos Numéricos	182
	Exemplo 5.1	182
	Exemplo 5.2	184
	Exemplo 5.3	186
	Exemplo 5.4	190
	Exemplo 5.5	194
	Exemplo 5.6	203
	Exemplo 5.7	206
6. Con	trole Híbrido: Otimização da Força de Controle	218
6.1	Introdução	218
6.2	Ganhos da Força de Controle	218
6.3	Estudo Paramétrico	220
6.4	Resposta no Tempo	227
6.5	Influência dos Parâmetros do AMH e da Estrutura	229
6.6	Força de Controle Otimizada	235
7. Con	iclusões e Sugestões	237
7.1	Conclusões	237
7.2	Sugestões Para Trabalhos Futuros	240
8. Refe	erências Bibliográficas	242
Apênd	ice A – Níveis Aceitáveis de Vibração	257

LISTA DE FIGURAS

Esquema de um sistema de controle ativo (Soong, 1990)	36
Estrutura com um AMS conectado	45
Fator de amplificação em função de eta	
(μ=0.05, α=1) (Soong & Dargush, 1997)	48
Sistema com <i>N</i> graus de liberdade com AMS instalado	51
Sistema estrutural de dois graus de liberdade com	
AMS instalado	53
Evolução do deslocamento <i>d</i> 1 sem controle e com	
AMS	55
Evolução do deslocamento d ₂ sem controle e com	
AMS	55
Deslocamentos máximos normalizados de cada	
andar variando-se μ	56
Velocidades máximas normalizadas de cada	
andar variando-se μ	57
Acelerações máximas normalizadas de cada	
andar variando-se μ	57
Deslocamentos rms normalizados de cada andar	
variando-se μ	58
Velocidades rms normalizadas de cada andar	
variando-se μ	58
Acelerações rms normalizadas de cada andar	
variando-se μ	59
Evolução do deslocamento d2 variando a massa	
do AMS	59
	Esquema de um sistema de controle ativo (Soong, 1990) Estrutura com um AMS conectado Fator de amplificação em função de β (μ =0.05, α =1) (Soong & Dargush, 1997) Sistema com <i>N</i> graus de liberdade com AMS instalado Sistema estrutural de dois graus de liberdade com AMS instalado Evolução do deslocamento d_1 sem controle e com AMS Evolução do deslocamento d_2 sem controle e com AMS Deslocamentos máximos normalizados de cada andar variando-se μ Velocidades máximas normalizadas de cada andar variando-se μ Deslocamentos <i>rms</i> normalizados de cada andar variando-se μ Velocidades <i>rms</i> normalizados de cada andar variando-se μ Velocidades <i>rms</i> normalizadas de cada andar variando-se μ Acelerações <i>rms</i> normalizadas de cada andar variando-se μ Acelerações <i>rms</i> normalizadas de cada andar variando-se μ Acelerações <i>rms</i> normalizadas de cada andar variando-se μ Evolução do deslocamento d_2 variando a massa do AMS

Figura 2.14 -	Evolução do deslocamento do primeiro andar sem	
	controle e com AMS	60
Figura 2.15 (a) -	Edifício de dez andares	62
Figura 2.15 (b)	Freqüências naturais de vibração	62
Figura 2.16 -	Três primeiros modos de vibração do edifício sem	
	controle e com AMS	64
Figura 2.17 -	Evolução do deslocamento do décimo andar	
	(pulso de carga)	66
Figura 2.18 -	Evolução do deslocamento do décimo andar	
	(carga contínua)	67
Figura 2.19 -	Caso (a) de carregamento (Villaverde & Koyama,	
	1993): (a) deslocamentos máximos;	
	(b) deslocamentos <i>rms</i>	69
Figura 2.20 -	Caso (a) de carregamento: Parâmetros de Den	
	Hartog (a) deslocamentos máximos;	
	(b) deslocamentos r <i>ms</i>	69
Figura 2.21 -	Caso (b) de carregamento (pulso de carga): (a)	
	deslocamentos máximos; (b) deslocamentos rms	70
Figura 2.22 -	Caso (b) de carregamento (carga contínua): (a)	
	deslocamentos máximos; (b) deslocamentos rms.	71
Figura 2.23 -	Caso (c) de carregamento (pulso de carga): (a)	
	deslocamentos máximos; (b) deslocamentos rms.	72
Figura 2.24 -	Caso (c) de carregamento (carga contínua): (a)	
	deslocamentos máximos; (b) deslocamentos rms	72
Figura 2.25 -	Sistema de dois graus de liberdade	73
Figura 2.26 -	Curva de resposta em freqüência do edifício	78
Figura 2.27 -	Resposta em freqüência do AMS variando-se eta	78
Figura 2.28 -	Resposta em freqüência do edifício e do AMS	
	variando-se o sinal de β	79
Figura 2.29 -	Resposta em freqüência do edifício para vários	
	níveis de amortecimento (β =0.0)	80
Figura 2.30 -	Diagramas de bifurcação da resposta linear	
	(β =0.0) do edifício e do AMS	81

Figura 2.31 -	Diagramas de bifurcação da resposta não-linear	
	com β positivo(β =+10 ⁴ N/m ³) do edifício e do AMS	82
Figura 2.32 -	Evolução do deslocamento do AMS para	
	ω = 3.063934 rad/s	82
Figura 2.33 -	Plano fase do AMS para ω = 3.063934 rad/s	82
Figura 2.34 -	Evolução da velocidade do edifício para	
	ω = 3.176173 rad/s	83
Figura 2.35 -	Plano fase do edifício para ω = 3.176173 rad/s	83
Figura 2.36 -	Diagramas de bifurcação da resposta não-linear	84
	com β negativo (β =-10 ⁴ N/m ³) do edifício e do AMS	
	obtidos através do algoritmo da continuação	
Figura 2.37 -	Diagramas de bifurcação da resposta não-linear	
	com β negativo (β =-10 ⁴ N/m ³) do edifício e do AMS	
	obtidos através do algoritmo da força bruta	84
Figura 2.38 -	Diagramas de bifurcação da resposta não-linear	
	com β negativo (β =-10 ⁴ N/m ³) do edifício e do AMS	
	(<i>c</i> ₁ =32165.15 Ns/m e <i>c</i> ₂ =12000.0 Ns/m) utilizando	
	o método da Continuação	85
Figura 2.39 -	Diagramas de bifurcação da resposta não-linear	
	com β negativo (β =-10 ⁴ N/m ³) do edifício e do AMS	
	$(c_1=32165.15 \text{ Ns/m e } c_2=12000.0 \text{ Ns/m})$ utilizando	
	o método da Força Bruta	86
Figura 2.40 -	Plano Fase e Seção de Poincaré para	
	ω ₁ =2.500335 rad/s	87
Figura 2.41 -	Resposta no tempo do deslocamento do edifício	
	(ω ₁ =2.500335 rad/s)	87
Figura 2.42 -	Evolução no tempo dos deslocamentos do edifício	
	e do AMS e da força excitadora	
	(ω ₁ =2.500335 rad/s)	88
Figura 2.43 -	Plano Fase e Seção de Poincaré para	
	ω ₂ =2.700144 rad/s	89

Figura 2.44 -	Resposta no tempo do deslocamento do edifício	
	(ω ₂ =2.700144 rad/s)	89
Figura 2.45 -	Evolução no tempo dos deslocamentos do edifício	
	e do AMS e da força excitadora	
	(ω ₂ =2.700144 rad/s)	90
Figura 2.46 -	Plano Fase e Seção de Poincaré para	
	ω ₃ =2.750135 rad/s	91
Figura 2.47 -	Resposta no tempo do deslocamento do edifício	
	(ω ₃ =2.750135 rad/s)	91
Figura 2.48 -	Evolução no tempo dos deslocamentos do edifício	
	e do AMS e da força excitadora	
	(ω ₃ =2.750135 rad/s)	92
Figura 2.49 -	Plano Fase e Seção de Poincaré para	
	ω ₄ =2.810040 rad/s	93
Figura 2.50 -	Resposta no tempo do deslocamento do edifício	
	(ω₄=2.810040 rad/s)	93
Figura 2.51 -	Evolução no tempo dos deslocamentos do edifício	
	e do AMS e da força excitadora	
	(ω₄=2.810040 rad/s)	94
Figura 2.52 -	Gráficos da convergência dos expoentes de	
	Lyapunov para as diversas freqüências estudadas	96
Figura 2.53 -	Evolução dos deslocamentos do edifício e do	
	AMS numa freqüência na região "aberta" da curva	
	(ω=3.15 rad/s)	96
Figura 3.1 -	Modelo estrutural de um sistema principal	
	equipado com AMSM	98
Figura 3.2 -	Configurações de sistemas AMSM	101
Figura 3.3 -	Curvas de resposta em freqüência	107
Figura 3.4 -	Curva de resposta em freqüência, comparação	
	com Jangid (1999)	108
Figura 3.5 -	Evolução no tempo do deslocamento da massa	
	principal (configuração 1)	109

Figura 3.6 -	Evolução no tempo do deslocamento da massa	
	principal (configuração 2)	110
Figura 3.7 -	Evolução no tempo do deslocamento da massa	
	principal (configuração 3)	110
Figura 3.8 -	Evolução no tempo do deslocamento da massa	
	principal (configuração 4)	110
Figura 3.9 -	Deslocamento total máximo da segunda massa	111
Figura 3.10 -	Deslocamento total <i>rms</i> da segunda massa	112
Figura 3.11 -	Deslocamento total máximo da primeira massa	112
Figura 3.12 -	Deslocamento total <i>rms</i> da primeira massa	113
Figura 3.13 -	Curvas de resposta em freqüência (µ=0.1)	114
Figura 3.14 -	Curvas de resposta em freqüência (μ=0.05)	115
Figura 3.15 -	Evolução no tempo do deslocamento da massa	
	principal (μ=0.1; conf. 1)	117
Figura 3.16 -	Evolução no tempo do deslocamento da massa	
	principal (μ=0.1; conf. 2)	117
Figura 3.17 -	Evolução no tempo do deslocamento da massa	
	principal (μ=0.1; conf. 3)	117
Figura 3.18 -	Evolução no tempo do deslocamento da massa	
	principal (μ=0.1; conf. 4)	118
Figura 3.19 -	Deslocamento total máximo	119
Figura 3.20 -	Deslocamento total <i>rms</i>	119
Figura 3.21 -	Influência da relação entre as massas do pico de	
	R_d	120
Figura 3.22 -	(a) Citycorp Center; (b) Características dinâmicas	
	da estrutura (Soong & Dargush, 1997)	121
Figura 3.23 -	Evolução no tempo do deslocamento da massa	
	principal	122
Figura 3.24 -	Evolução no tempo do deslocamento da massa	
	principal (ω=1.035 rad/s)	123
Figura 3.25 -	Curva de resposta em freqüência da estrutura	
	equipada com AMS	123

Figura 3.26 -	Curva de resposta em freqüência da estrutura	
	equipada com AMSM	124
Figura 3.27 -	Evolução do deslocamento da estrutura com	
	AMSM	124
Figura 3.28 -	Resposta em freqüência sem controle e com	
	AMSM (n _a =3)	127
Figura 3.29 -	Resposta em freqüência com AMSM (n _a =2; n _a =3)	128
Figura 3.30	Resposta em freqüência com AMSM (n _a =3; n _a =4;	
	n _a =5; n _a =7 e n _a =11)	128
Figura 3.31	Resposta em freqüência com AMSM	
	(Yamaguchi & Harnpornchai, 1993)	129
Figura 3.32 -	Gráfico da função de densidade espectral da	
	parcela aleatória	131
Figura 3.33 -	Amostra da força aleatória (Ω =3.174; ω =0.5 e	
	<i>a</i> =0.3)	134
Figura 3.34 -	Amostra da força aleatória (Ω =3.174; ω =0.5 e	
	<i>a</i> =0.1)	134
Figura 3.35 -	Amostra da força aleatória (Ω =3.174; ω =0.1 e	
	<i>a</i> =0.3)	135
Figura 3.36 -	Amostra da força aleatória (Ω =3.174; ω =0.1 e	
	<i>a</i> =0.1)	135
Figura 3.37 -	Amostra da força aleatória (Ω =3.174; ω =0.1 e	
	<i>a</i> =1.0)	135
Figura 3.38 -	Evolução no tempo do deslocamento da massa	
	principal -configuração 1 (F. Aleat.)	136
Figura 3.39 -	Evolução no tempo do deslocamento da massa	
	principal -configuração 2 (F. Aleat.)	136
Figura 3.40 -	Evolução no tempo do deslocamento da massa	
	principal -configuração 3 (F. Aleat.)	137
Figura 3.41 -	Evolução no tempo do deslocamento da massa	
	principal -configuração 4 (F. Aleat.)	137
Figura 3.42 -	Curvas de resposta em freqüência (AMS	
	comparado a AMSM)	139

Figura 3.43 -	Amostra da força aleatória (Ω =2.865 rad/s, <i>a</i> =0.3	
	e ω _/ =0.5)	139
Figura 3.44 -	Evol. No tempo do desl. da massa principal -	
	conf. 1 (F. Aleat. x F. Determ.)	140
Figura 3.45 -	Evol. No tempo do desl. da massa principal -	
	conf. 2 (F. Aleat. x F. Determ.)	140
Figura 3.46 -	Evol. No tempo do desl. da massa principal -	
	conf. 3 (F. Aleat. x F. Determ.)	141
Figura 3.47 -	Evol. No tempo do desl. da massa principal -	
	conf. 4 (F. Aleat. x F. Determ.)	141
Figura 3.48 -	Evol. No tempo do desl. da massa principal -	
	conf. 1 (AMS. x AMSM)	142
Figura 3.49 -	Evol. No tempo do desl. da massa principal -	
	conf. 2 (AMS. x AMSM)	142
Figura 3.50	Evol. No tempo do desl. da massa principal -	
	conf. 3 (AMS. x AMSM)	143
Figura 3.51 -	Evol. No tempo do desl. da massa principal -	
	conf. 4 (AMS. x AMSM)	143
Figura 4.1 -	Sistema não controlado	144
Figura 4.2 -	Controle de malha aberta	145
Figura 4.3 -	Controle de malha fechada	145
Figura 4.4 -	Shear-frame de 2 andares	160
Figura 4.5 -	Evolução da aceleração do primeiro andar sem	
	controle e com controle ótimo (Caso 1)	162
Figura 4.6 -	Evolução do deslocamento do segundo andar	
	sem controle e com controle ótimo (Caso 1)	163
Figura 4.7 -	Evolução do deslocamento do segundo andar	
	com controle e sem controle (Caso 2)	164
Figura 4.8 -	Evolução das forças de controle aplicadas sobre a	
	estrutura	164

Figura 4.9 -	Evoluções dos deslocamentos do primeiro e	
	segundo andar dobrando a rigidez e o	
	amortecimento (Caso 2)	167
Figura 4.10 -	Evoluções dos deslocamentos do primeiro e	
	segundo andar dobrando o amortecimento	
	(Caso 2)	168
Figura 4.11 -	Sistema de um grau de liberdade, equipado com	
	cabo tensionado, submetido à aceleração na base	
	do terremoto El Centro 1940	175
Figura 5.1 -	Acelerações máximas normalizadas	187
Figura 5.2 -	Acelerações <i>rms</i> normalizadas	187
Figura 5.3 -	Deslocamentos máximos normalizados (AMS)	188
Figura 5.4 -	Deslocamentos máximos normalizados (AMH)	189
Figura 5.5 -	Amplitude da resposta harmônica permanente	190
Figura 5.6 -	Resposta em freqüência com a adição de	
	amortecedores viscofluidos	191
Figura 5.7 -	Resposta em freqüência da estrutura com AMS	
	(μ=0.05) em conjunto com a adição de	
	amortecedores viscofluidos	192
Figura 5.8 -	Resposta em freqüência para estrutura equipada	
	com AMS e amortecedores viscofluidos (μ =0.05 e	
	μ=0.1)	192
Figura 5.9 -	Deslocamento máximo da massa principal	195
Figura 5.10 -	Deslocamento rms da massa principal	195
Figura 5.11 -	Deslocamentos máximos do AMS e do AMH	196
Figura 5.12 -	Deslocamentos <i>rms</i> do AMS e do AMH	196
Figura 5.13 -	Força máxima e <i>rms</i> do AMH	197
Figura 5.14 -	Deslocamento máximo da massa principal	
	variando μ	198
Figura 5.15 -	Deslocamento <i>rms</i> da massa principal variando μ	198
Figura 5.16 -	Deslocamento máximo do amortecedor variando μ	199
Figura 5.17 -	Deslocamento <i>rms</i> do amortecedor variando μ	199

Figura 5.18 -	Forças de controle máxima e rms variando μ	200
Figura 5.19 -	Deslocamento máximo da massa principal	
	variando ξ	201
Figura 5.20 -	Deslocamento rms da massa principal variando ξ	201
Figura 5.21 -	Deslocamento máximo do amortecedor variando ξ	202
Figura 5.22 -	Deslocamento <i>rms</i> do amortecedor variando ξ	202
Figura 5.23 -	Forças de controle máxima e rms variando ξ	203
Figura 5.24 -	Modos de vibração.	204
Figura 5.25 -	Evolução no tempo do deslocamento do sistema	200
Figura 5 26	Funcipal Evolução no tempo da velocidade do sistema	209
rigura 5.20 -	principal	209
Figura 5.27 -	Evolução no tempo da aceleração do sistema	200
0	principal	210
Figura 5.28 -	Evolução no tempo da força de controle	210
Figura 5.29a -	Plano Fase	211
Figura 5.29b -	Seção de Poincaré	211
Figura 5.30 -	Evolução no tempo do deslocamento do sistema	
	principal (Q ₁₁₁₁ = Q ₂₂₂₂ = Q ₃₃₃₃ =Q ₄₄₄₄ =10 ⁷)	212
Figura 5.31 -	Evolução no tempo da velocidade do sistema	
	principal (Q ₁₁₁₁ = Q ₂₂₂₂ = Q ₃₃₃₃ =Q ₄₄₄₄ =10 ⁷)	212
Figura 5.32 -	Evolução no tempo da aceleração do sistema	
	principal (Q ₁₁₁₁ = Q ₂₂₂₂ = Q ₃₃₃₃ =Q ₄₄₄₄ =10 ⁷)	213
Figura 5.33 -	Evolução no tempo da força de controle	
	$(Q_{1111} = Q_{2222} = Q_{3333} = Q_{4444} = 10^7)$	213
Figura 5.34a -	Plano Fase (Q ₁₁₁₁ = Q ₂₂₂₂ = Q ₃₃₃₃ =Q ₄₄₄₄ =10')	214
Figura 5.34b -	Seção de Poincaré	
	$(Q_{1111} = Q_{2222} = Q_{3333} = Q_{4444} = 10')$	214
Figura 5.35 -	Evolução no tempo do deslocamento do sistema	
	principal ($Q_{1111}=10^{10}$)	214
⊢ıgura 5.36 -	Evolução no tempo da velocidade do sistema	o / -
	principal (Q ₁₁₁₁ =10 ¹⁰)	215

Figura 5.37 -	Evolução no tempo da aceleração do sistema principal ($Q_{1111}=10^{16}$)	215
Figura 5.38 -	Evolução no tempo da força de controle	040
E: E 00	$(Q_{1111}=10^{-10})$	216
Figura 5.39a -	Plano Fase ($Q_{1111}=10^{10}$)	216
Figura 5.39b -	Seçao de Poincare (Q ₁₁₁₁ =10 ¹⁰)	216
Figura 6.1 -	Resposta em freqüência em função da combinação de ganhos	223
Figura 6.2 -	Variação da resposta em freqüência em relação a	
	q ₃₁ /R e q ₄₁ /R	223
Figura 6.3 -	Projeções da superfície <i>H</i>	224
Figura 6.4 -	Respostas em freqüência com AMS e com AMH	
	(μ=0.001)	225
Figura 6.5 -	Respostas em freqüência com AMS e com AMH	
	(μ=0.01)	225
Figura 6.6 -	Respostas em freqüência com AMS e com AMH	
	(µ=0.05)	226
Figura 6.7 -	Respostas em freqüência com AMS e com AMH	
	(μ=0.1)	226
Figura 6.8 -	Relação entre a resposta controlada e sem	
	controle, <i>H_c/H_{sc}</i> , para o AMS e AMH	227
Figura 6.9 -	Respostas em freqüência com AMH e AMS não	
	otimizado (μ=0.001)	230
Figura 6.10 -	Respostas em freqüência com AMH e AMS não	
	otimizado (μ=0.01)	230
Figura 6.11 -	Respostas em freqüência com AMH e AMS não	
	otimizado (μ=0.1)	231
Figura 6.12 -	Respostas em freqüência com AMH e com AMS	
	(ω=0.25 Hz)	231
Figura 6.13 -	Respostas em freqüência com AMH e com AMS	
	(ω=0.5 Hz)	232

Figura 6.14	-	Respostas em freqüência com AMH e com AMS	
		(ω=1.0 Hz)	232
Figura 6.15	-	Respostas em freqüência com AMH e com AMS	
		(ω=2.0 Hz)	233
Figura 6.16	-	Respostas em freqüência com AMH e com AMS	
		(ω=3.0 Hz)	233
Figura 6.17	-	Variação de Q ₃₁ /K com a freqüência natural	234
Figura 6.18	-	Variação do parâmetro ótimo Q_{31}/K com a massa	
		principal M	234
Figura 6.19	-	Variação de Q_{31}/K em relação a μ para diferentes	
		valores de ξ	235
Figura A.1	-	Espectro de resposta para efeitos da vibração nas	
		pessoas e na estrutura (Bachmann & Ammann,	
		1987) 1 pol = 25.4 mm	258
Figura A.2	-	Espectro de resposta para efeitos da vibração nas	
		pessoas, na estrutura e nas máquinas (Inman,	
		1995)	259
Figura A.3	-	Percepção humana da amplitude do	
		deslocamento da vibração com relação à	
		freqüência (Bachmann & Ammann, 1987)	
		1 pol = 25.4 mm	261
Figura A.4	-	Percepção humana da aceleração máxima com	
		relação à freqüência	
		(Bachmann & Ammann, 1987)	261

LISTA DE TABELAS

Tabela 2.1	-	Parâmetros ótimos do AMS considerando o amortecimento do sistema principal (Warburton, 1982)	50
Tabela 2.2	-	Valores máximos e <i>rms</i> da resposta dinâmica sem	
		controle utilizando AMS	54
Tabela 2.3	-	Redução do deslocamento do segundo andar	61
Tabela 2.4	-	Propriedades da Estrutura	62
Tabela 2.5	-	Deslocamento máximo em cada andar em metros	63
Tabela 2.6	-	Comparação da resposta máxima	65
Tabela 2.7	-	Resposta rms do décimo andar da estrutura	
		controlada nos dois casos de carregamento	67
Tabela 2.8	-	Expoentes de Lyapunov para diversas freqüências	
		estudadas	95
Tabela 3.1	-	Parâmetros ótimos para AMS	105
Tabela 3.2	-	Parâmetros ótimos para AMSM	106
Tabela 3.3	-	Valores máximos de <i>R</i> _d	106
Tabela 3.4	-	Respostas máximas e <i>rms</i> (Configuração 1)	108
Tabela 3.5	-	Respostas máximas e <i>rms</i> (Configuração 2)	108
Tabela 3.6	-	Respostas máximas e <i>rms</i> (Configuração 3)	109
Tabela 3.7	-	Respostas máximas e <i>rms</i> (Configuração 4)	109
Tabela 3.8	-	Amplitudes da resposta permanente	111
Tabela 3.9	-	Parâmetros ótimos para μ=0.1	113
Tabela 3.10	-	Parâmetros ótimos para µ=0.05	114
Tabela 3.11	-	Respostas máximas e <i>rms</i> para μ=0.1	
		(Configuração 1)	115
Tabela 3.12	-	Respostas máximas e <i>rms</i> para μ=0.1	
		(Configuração 2)	116
Tabela 3.13	-	Respostas máximas e <i>rms</i> para μ=0.1	
		(Configuração 3)	116

Tabela 3.14 -	Respostas máximas e <i>rms</i> para μ=0.1	
	(Configuração 4)	116
Tabela 3.15 -	Amplitudes da resposta permanente para μ =0.1	118
Tabela 3.16 -	Resposta máxima e rms (Citycorp Center)	122
Tabela 3.17 -	Propriedades do AMSM	124
Tabela 3.18 -	Valores dos vários coeficientes nas expressões dos	
	parâmetros ótimos, Jangid (1999)	126
Tabela 3.19 -	Deslocamento máximo da massa principal	137
Tabela 3.20 -	Deslocamento rms da massa principal	138
Tabela 3.21 -	Deslocamentos máximos e rms da massa principal	138
Tabela 3.22 -	Deslocamentos máximos e rms da massa principal	139
	(Ω=2.685 rad/s; <i>a</i> =0.3 e ω _/ =0.5)	
Tabela 4.1 -	Valores máximos e rms da resposta dinâmica sem	
	controle (Caso 1)	161
Tabela 4.2 -	Valores máximos e rms da resposta dinâmica sem	
	controle (Caso 2)	161
Tabela 4.3 -	Valores máximos e rms controlados e reduções em	
	relação à resposta sem controle (Caso 1)	162
Tabela 4.4 -	Valores máximos e rms controlados e reduções em	
	relação à resposta sem controle (Caso 2)	163
Tabela 4.5 -	Valores máximos e rms controlados e reduções em	
	relação à resposta sem controle, dobrando rigidez e	
	amortecimento (Caso 1)	165
Tabela 4.6 -	Valores máximos e rms controlados e reduções em	
	relação à resposta sem controle, dobrando	
	amortecimento (Caso 1)	166
Tabela 4.7 -	Valores máximos e rms controlados e reduções em	
	relação à resposta sem controle, dobrando rigidez e	
	amortecimento (Caso 2)	166
Tabela 4.8 -	Valores máximos e rms controlados e reduções em	
	relação à resposta sem controle, dobrando	
	amortecimento (Caso 2)	166

Tabela 4.9 -	Comparação da resposta sem controle com o	
	controle linear	176
Tabela 4.10 -	Resposta com controle não-linear e redução em	
	relação ao controle linear	176
Tabela 5.1 -	Edifícios equipados com AMA e AMH no Japão	
	(Nishitani & Inoue, 2001)	181
Tabela 5.2 -	Deslocamentos e forças de controle máximos e rms	
	(carga contínua)	183
Tabela 5.3 -	Deslocamentos e forças de controle máximos e rms	
	(pulso de carga)	183
Tabela 5.4 -	Propriedades dos AMSs	184
Tabela 5.5 -	Deslocamentos máximos e rms	185
Tabela 5.6 -	Deslocamentos e forças de controle: máximos e rms	185
Tabela 5.7 -	Deslocamentos máximos e rms para freqüências	
	diversas (AMS)	188
Tabela 5.8 -	Deslocamentos máximos e rms para freqüências	
	diversas (AMH)	188
Tabela 5.9 -	Deslocamentos máximo, rms e permanente do	
	décimo andar	189
Tabela 5.10 -	Deslocamentos máximos do AMS e do AMH com	
	massa menor	190
Tabela 5.11 -	Deslocamentos máximos e rms do décimo andar e	
	do AMS	193
Tabela 5.12 -	Deslocamentos e forças de controle	193
Tabela 5.13 -	Resposta máxima e <i>rms</i>	204
Tabela 5.14 -	Resposta máxima e rms do oitavo andar utilizando	
	AMS	205
Tabela 5.15 -	Resposta máxima e <i>rms</i> do AMS	205
Tabela 5.16 -	Resposta máxima e rms do oitavo andar utilizando	
	AMH	206
Tabela 5.17 -	Resposta máxima e <i>rms</i> do AMH	206

Tabela 5.18 -	Deslocamentos, velocidades e acelerações máximos	
	(AMS)	207
Tabela 5.19	Deslocamentos, velocidades e acelerações rms	
	(AMS)	207
Tabela 5.20 -	Deslocamentos, velocidades e acelerações máximos	
	(AMH Linear)	207
Tabela 5.21 -	Deslocamentos, velocidades e acelerações rms	
	(AMH Linear)	207
Tabela 5.22 -	Deslocamentos, velocidades e acelerações máximos	
	(AMH Não-linear)	208
Tabela 5.23 -	Deslocamentos, velocidades e acelerações rms	
	(AMH Não-linear)	208
Tabela 5.24 -	Deslocamentos, velocidades e acelerações máximos	
	variando Q _{ijkl} (AMH Não-linear)	211
Tabela 5.25 -	Deslocamentos, velocidades e acelerações rms	
	variando Q _{ijk} (AMH Não-linear)	211
Tabela 6.1 -	Picos da resposta em freqüência em função da	
	combinação de ganhos	222
Tabela 6.2 -	Ganhos ótimos e redução dos picos da resposta em	
	freqüência	224
Tabela 6.3 -	Redução da resposta em freqüência para β =1.0	227
Tabela 6.4 -	Deslocamentos, velocidades e acelerações do oitavo	
	andar	228
Tabela 6.5 -	Deslocamentos, velocidades e acelerações do AMH	228
Tabela 6.6 -	Forças de controle e ganhos ótimos	228
Tabela 6.7 -	Valor da amplitude da resposta permanente para	
	$\beta\text{=}1.0$ com AMS e com AMH para cada valor de	
	freqüência	229
Tabela 6.8 -	Valores de Q_{31}/K (<i>M</i> =1000t e ω =1.0 Hz) para ξ =0.02	236
Tabela 6.9 -	Valores de Q ₃₁ / <i>K</i> (<i>M</i> =1000t e ω=1.0 Hz) para ξ=0.05	236

LISTA DE SÍMBOLOS E ABREVIAÇÕES

Salvo indicação contrária, a notação seguinte é utilizada em todo este trabalho.

1 – Matrizes e Vetores

Negrito indica matriz ou vetor

Α	-	matriz de estado
A'	-	matriz de estado controlada
В	-	matriz de locação dos controladores no espaço de estado
С	-	matriz de amortecimento da estrutura
C'	-	matriz de amortecimento controlada
D	-	matriz de localização das forças de controle
D'	-	vetor de localização do AMS
d	-	vetor das quantidades dinâmicas
Ε	-	matriz de localização das forças de excitação
F (<i>t</i>)	-	vetor do carregamento dinâmico aplicado sobre a estrutura
G	-	matriz dos ganhos
Н	-	matriz de locação da excitação no espaço de estado
Κ	-	matriz de rigidez da estrutura
K'	-	matriz de rigidez controlada
L	-	matriz de localização dos sensores
М	-	matriz de massa da estrutura
N	-	matriz de controlabilidade
0	-	matriz de observabilidade
Ρ	-	matriz de Ricatti
р	-	vetor de controle de malha aberta
Q	-	matriz de ponderação penalizando as variáveis de estado
q	-	vetor das forças de controle e da excitação desacopladas
R	-	matriz de ponderação penalizando as forças de controle
Τ	-	matriz modal de estado

- **Y**(ω) matriz das amplitudes da resposta harmônica
- *y* vetor dos deslocamentos
- y vetor das velocidades
- y vetor das acelerações
- z(t) vetor de estado
- ϕ_1 primeiro modo de vibração
- M matriz dos autovalores complexos
- λ vetor de controle de malha fechada

2 – Escalares

 A_{j}^{i} - coeficientes ligados às propriedades lineares do sistema $(A_{jk}^{i}, A_{jkl}^{i}, \text{etc.} \text{ são coeficientes relacionados às propriedades quadráticas, cúbicas, etc.})$

 a - proporção do desvio padrão para com a amplitude da parcela aleatória

a_{máx} - aceleração máxima

a_{rms} - aceleração *rms*

Bⁱ_j - coeficiente que relaciona a *j-ésima* força de controle com a
 i-ésima variável de estado

c - amortecimento do AMS

C₁^{*} - amortecimento modal

 $C_g(\omega)$ - coeficiente da transformada discreta de Fourier da amostra

- *d_{máx}* deslocamento máximo
- *d_{rms}* deslocamento *rms*
- *F* amplitude da parcela determinística da força
- f(*t*) carregamento aplicado sobre a estrutura
- G parcela aleatória da força não-determinística
- g(t) força aplicada à base da estrutura
- g'(t) amostra do processo estocástico

H - resposta harmônica permanente da massa principal normalizada

J - índice de performance do controle ótimo linear clássico

k - rigidez do AMS

 K_{j}^{i} - *i-ésimos* ganhos dos controles de ordem 1 (K_{jk}^{i}, K_{jkl}^{i} etc. são

ganhos de ordem 2, 3, etc.)

 K_1^* - rigidez modal

- *m* massa do AMS
- M_1^* massa modal

N - número de graus de liberdade da estrutura

N' - número de pontos analisados no processo

- na número de amortecedores
- *q* deslocamento relativo

 Q_{ij} - tensor de ponderação que penaliza quadraticamente o vetor de estado(Q_{ijk} , Q_{ijkl} etc. penalizam cubicamente, quarticamente, etc.)

R_{ij} - tensor de ponderação que penaliza as forças de controle

R - fator de magnificação dinâmica

R_d - razão entre as amplitudes da resposta harmônica permanente e da excitação

S_{ij} - tensor de ponderação que penaliza o vetor de estado final

 T_0 - tempo total de duração da força

u^j - *j-ésima* força de controle

 V_{ij} - coeficientes dos termos quadráticos na expansão de *J* em série de Taylor (V_{ijk} , V_{ijkl} etc. são coeficientes dos termos cúbicos, quárticos, etc.)

v_{máx} - velocidade máxima

V _{rms}	-	velocidade rms
V _{rms}	-	velocidade rms

 $\ddot{X}_{g}(t)$ - aceleração na base

- Y₁ amplitude de vibração do sistema principal
- $y_1(t)$ deslocamento relativo do sistema estrutural
- $\dot{y}(t)$ velocidade relativa do sistema estrutural

<i>y</i> (<i>t</i>)	-	aceleração relativa do sistema estrutural
УN	-	deslocamento do sistema reduzido
У _N	-	velocidade do sistema reduzido
̈́Υ _N	-	aceleração do sistema reduzido
Ζ	-	amplitude de vibração do AMS
Ζ(ω)	-	impedância do sistema
z (<i>t</i>)	-	deslocamento relativo da massa do AMS em relação à
estrut	tura	
α	-	razão entre as freqüências do AMS e do sistema principal
β	-	razão entre as freqüências da excitação e do sistema
princi	pal	
β'	-	magnitude da não-linearidade cúbica
$\Phi_{ m GG}($	ω)-	função densidade espectral
ξ	-	taxa de amortecimento
μ	-	razão entre as massas do AMS e do sistema principal
Ω	-	freqüência da parcela determinística da força aleatória
ω	-	freqüência natural
ω1	-	primeira freqüência natural da estrutura
ω _F	-	freqüência da excitação
ω_{l}	-	largura da faixa de freqüência que compõe a parcela
aleato	ória	
$\sigma_{\scriptscriptstyle { m GG}}$	-	desvio padrão da amplitude da parcela aleatória
$\sigma^{\scriptscriptstyle 2}_{\scriptscriptstyle {\sf GG}}$	-	variância da amplitude da parcela aleatória
θ_k	-	ângulo de fase aleatório
Γ	-	fator de participação
λ	-	autovalores complexos
λ'	-	expoente de Lyapunov

3 – Índices

 $()^{T}$ - transposta da matriz (vetor)

4 - Operadores

- ([·]) primeira derivada em relação ao tempo
- (") segunda derivada em relação ao tempo
- Δ () Incremento finito

5 - Abreviações

- ALSAmortecedor líquido sintonizadoAMAAmortecedor de massa ativo
- AMH Amortecedor de massa híbrido
- AMS Amortecedor de massa sintonizado
- AMSM Amortecedor de massa sintonizado múltiplo
- **AVF** Amortecedor viscofluido
- rms Root mean square

Among the innumerable mortifications which waylay human arrogance on every side may well be reckoned our ignorance of the most common objects and effects, a defect which we become more sensible by every attempt to supply it. Vulgar and inactive minds confound familiarity with knowledge and conceive themselves informed of the whole nature of things when they are shown their form or told their use; but the speculatist, who is not content with superficial views, harasses himself with fruitless curiosity, and still, as he inquires more, perceives only that he knows less.

Samuel Johnson, *The Idler* (Saturday, 25 November 1758)

1 Introdução

Com o crescente progresso das técnicas de análise e dimensionamento estrutural e o advento de novos materiais, estão sendo projetadas e construídas estruturas cada vez mais esbeltas e flexíveis. Tais estruturas são assim mais vulneráveis à ocorrência de vibrações excessivas causadas por carregamentos dinâmicos, tais como terremotos, ventos, ondas, tráfego intenso, ocupação humana e até mesmo atos deliberados. Essas vibrações são indesejáveis, não só do ponto de vista de segurança, mas também do conforto ambiental.

Assim, a proteção das estruturas civis, incluindo o seu conteúdo e ocupantes, é, sem dúvida, uma preocupação mundial. Uma alternativa para este problema, amplamente estudada nas últimas décadas, é o controle estrutural. A importância deste tema pode ser constatado ao se analisar os anais de três conferências mundiais sobre o assunto realizadas recentemente (em 1994, 1998 e 2002), acompanhadas por mais de 700 participantes de 17 diferentes países. (IASC, 1994; Kobori 1998; cwis.usc.edu/dept/civil_eng/structural/welcome.html em 09/07/2002).

Apesar de ter sido desenvolvida principalmente na Engenharia Aeroespacial, essa tecnologia rapidamente se estendeu para a Engenharia Civil, na proteção de pontes e edifícios contra cargas dinâmicas excessivas. As primeiras aplicações importantes em Engenharia Civil ocorreram por volta de 1960, mas a noção de controle estrutural tem suas raízes nas pesquisas do professor de engenharia japonês John Milne, que idealizou e construiu uma casa de madeira com sistema de isolamento contra terremotos há mais de cem anos (Housner *et al.*, 1997).

O controle estrutural, basicamente, promove uma alteração nas propriedades de rigidez e amortecimento da estrutura, seja pela adição de dispositivos externos, seja pela ação de forças externas. Ele pode ser classificado como: controle passivo, controle ativo, controle híbrido ou controle semi-ativo (Soong & Dargush, 1997; Spencer Jr. & Soong, 1999; Spencer Jr. & Sain, 1997).

1.1 Controle Passivo

Um sistema de controle passivo se resume à instalação de um ou mais dispositivos incorporados à estrutura que absorvem ou consomem uma parte da energia transmitida pelo carregamento dinâmico, reduzindo, assim, a dissipação dessa energia nos membros da estrutura principal. Segundo Fujino *et al.* (1996), essa dissipação se dá tanto pela conversão da energia cinética em calor, como também pela transferência de energia entre os modos de vibração.

Essa tecnologia de controle passivo tem sido objeto de estudos e pesquisas no decorrer dos últimos 30 anos, resultando em um grande número de implementações práticas do mesmo ao redor do mundo, principalmente nos Estados Unidos e Japão (Holmes, 1995, Soong & Dargush, 1997) e engloba uma gama de materiais e mecanismos que modificam propriedades como massa, amortecimento e rigidez da estrutura.

Os mecanismos típicos de controle passivo incluem amortecedores de massa, que controlam a resposta estrutural através da transferência de energia entre a estrutura principal e uma massa auxiliar, amortecedores estruturais, que dissipam energia durante o processo de deformação dos mesmos, e sistemas de isolamento de base, que desacoplam o movimento da estrutura das vibrações sísmicas do solo (Riley *et al.*, 1998).

Ainda que, recentemente, o controle estrutural ativo tenha recebido grande atenção por parte da comunidade científica, as técnicas de controle passivo ainda se mantém como alternativa atraente devido à sua simplicidade e confiabilidade (Hadi & Arfiadi, 1998). Encontram-se, inclusive, em franca expansão, devido à praticidade do método e da disponibilidade dos dispositivos (Sakamoto & Kobori, 1995).

Segundo Jurukovski *et al.* (1995) os sistemas de controle passivo, comparados aos sistemas de controle ativo, apresentam umas série de vantagens em sua aplicação, a saber:

 Não requerem o uso de alta tecnologia, como por exemplo: sistema de rápida aquisição de dados; algoritmos para determinação do efeito de controle e sistemas de geração de forças de controle, que se tornam necessários na implementação do controle ativo. Em vez disso, recaem em soluções estruturais convencionais, obtidas na indústria em um curto período de tempo.

- Não necessitam de um sistema de manutenção permanente, que requer uma equipe especializada e o suporte da indústria.
- Possuem eficiência e confiabilidade comprovada, além de serem independentes de fontes externas de energia.
- Sua aplicação vem sendo realizada já por um bom tempo no controle de vibrações de estruturas reais e sua eficiência comprovada sob o efeito de fortes terremotos num grande número de casos.

Entretanto, há limitações no uso desta tecnologia, já que os dispositivos são projetados de forma a funcionar eficientemente dentro de uma determinada faixa de freqüência. As características dinâmicas da maioria dos carregamentos naturais, como ventos e terremotos, não são conhecidas *a priori*, sendo de natureza aleatória. Se a estrutura projetada com controle passivo for excitada fora da faixa de freqüência de projeto, este tipo de controle perde a sua eficiência. Exemplo disso é o caso do amortecedor de massa sintonizado (Kwok & Samali, 1995), que, como o próprio nome sugere, é sintonizado em uma dada freqüência modal da estrutura, sendo basicamente projetado para controle de estruturas que vibrem predominantemente em um dado modo de vibração, em geral o primeiro.

Um resumo sobre os mecanismos de controle passivo mais comuns, utilizados em aplicações práticas, pode ser encontrado em Avila (2001). A seguir são feitos alguns breves comentários sobre os mesmos:

- <u>Isolamento de Base</u>: Essa técnica consiste na instalação de um isolamento sob a estrutura, isto é, na fundação do edifício. Já foi utilizada satisfatoriamente em um grande número de estruturas no controle de vibrações causadas por terremotos. Maiores informações sobre o assunto podem ser encontradas em Chopra (1995).
- <u>Amortecedores Metálicos</u>: Essa técnica tira proveito da capacidade de dissipação de energia através da deformação inelástica de substâncias metálicas. Estes amortecedores podem ser instalados nas paredes, pilares e vigas. Utilizam a deformação relativa entre os membros da estrutura principal de forma que a deformação no amortecedor dissipa parte da energia de vibração e amortece o movimento da estrutura. Têm a facilidade de poder ser fabricado em qualquer forma particular. Maiores informações sobre esse

dispositivo são encontradas em Soong & Dargush (1997), Sakamoto & Kobori (1995) e Skinner *et al.* (1975).

- <u>Amortecedores de Fricção</u>: Os chamados amortecedores de fricção baseiam-se no mecanismo de dissipação de energia através do atrito entre dois elementos sólidos, deslizando um em relação ao outro. Considerações práticas para o projeto de estruturas utilizando amortecedores de fricção podem ser encontradas em Austin & Pister (1985), Filialtraud & Cherry (1990) e Soong & Dargush (1997).
- <u>Amortecedores Viscoelásticos</u>: Consiste em uma camada de material viscoelástico entre dois elementos rígidos que podem se movimentar um em relação ao outro. Dessa forma, quase toda deformação é devida ao cisalhamento que dissipa mais energia do que no caso da deformação longitudinal do material. Como o próprio nome indica, o material viscoelástico age em parte como um material viscoso que funciona absorvendo e dissipando energia, e parte como material elástico que armazena energia. Estudos aprofundados sobre o assunto podem ser encontrados em: Soong & Dargush (1997), Chang *et al.* (1995), Chang & Lai (1996), Shen *et al.* (1995), Zhang & Soong (1992) e Isyumov & Tschanz (1986).
- <u>Amortecedores Viscofluidos</u>: Esta classe de amortecedores baseia-se na dissipação de energia através da conversão de energia mecânica em calor, enquanto um pistão cilíndrico se move através de uma substância altamente viscosa, como, por exemplo, silicone ou gel (Makris *et al.*,1993; Housner *et al.*,1997; Soong & Dargush 1997).
- <u>Amortecedores de Massa Sintonizados (AMS)</u>: O amortecedor de massa sintonizado tem como objetivo reduzir a demanda de dissipação de energia dos membros estruturais submetidos a ação de carregamentos dinâmicos. Essa redução se dá transferindo-se parte da energia vibratória da estrutura para o amortecedor de massa sintonizado (AMS), que em sua forma mais simples, consiste em um sistema massa-mola-amortecedor ancorado ou conectado à estrutura principal. Esse dispositivo é descrito em detalhes no Capítulo 2.
- <u>Amortecedores Líquidos Sintonizados (ALS)</u>: Estes amortecedores adicionam amortecimento indireto à estrutura. Absorvem energia estrutural através da ação viscosa do líquido e do quebrar das ondas. Sua aplicação no controle de

vibrações de estruturas civis pode ser feita, por exemplo, utilizando um tanque completamente cheio de dois líquidos imiscíveis para amortecer a resposta da estrutura (Bauer, 1984; Soong & Dargush, 1997).

1.2 Controle Ativo

O controle ativo consiste na aplicação de forças à estrutura através de atuadores alimentados por fontes de energia externa. A magnitude dessas forças é calculada em tempo real por um computador, utilizando um dos variados algoritmos de controle ativo, sendo função da resposta da estrutura medida através de sensores, também em tempo real (Soong, 1990; Adeli & Saleh, 1999). O sistema de controle ativo não possui as limitações do controle passivo no que se refere à freqüência da excitação, já que é capaz de se adaptar às mudanças de parâmetros tanto do carregamento, como também da estrutura.

A configuração básica de um sistema de controle ativo está apresentada na Figura (1.1). Este consiste, basicamente, em sensores localizados em determinados pontos da estrutura com o objetivo de medir tanto a resposta como a excitação; dispositivos para o processamento destes dados que, através dos algoritmos de controle, calculam as forças de controle necessárias; e atuadores alimentados por fontes de energia externa que aplicam as forças de controle sobre o sistema.

Figura 1.1 Esquema de um sistema de controle ativo (Soong, 1990)

A teoria de controle vem sendo aplicada há várias décadas nas engenharias elétrica, mecânica e aerospacial. A idéia da aplicação dessa teoria para controle de
vibrações de estruturas civis surgiu no início dos anos 70 com o estudo publicado por Yao (1972). Ainda que a base teórica seja a mesma, a aplicação do controle ativo em estruturas de Engenharia Civil apresenta uma série de peculiaridades que a torna um amplo campo de pesquisa.

Muitos progressos foram realizados nas últimas décadas, tendo-se na atualidade uma série de implementações práticas para controle ativo de estruturas em escala real no Japão, China, Estados Unidos e Taiwan (Kwok & Samali, 1995; Spencer Jr. & Sain, 1997; Spencer Jr. & Soong, 1999; Miller *et al*, 1988, Shelley *et al*, 1995; Fujino *et al*, 1996). Sistemas de controle ativo também são utilizados, temporariamente, na fase de construção de pontes e estruturas de grandes vãos (Spencer Jr. & Soong, 1999).

Ainda que mais de uma década tenha transcorrido desde a primeira aplicação do controle ativo em escala real no Kyobashi Seiwa building no Japão em 1989 (Spencer Jr. & Sain, 1997), ainda existe uma série de desafios antes dessa tecnologia ter plena aceitação entre engenheiros e profissionais da construção civil, como por exemplo: (a) redução dos custos de implantação e manutenção; (b) eliminação da dependência de fontes de energia externa; (c) aumento da robustez, performance e confiabilidade (Spencer Jr. & Sain 1997).

Segundo Spencer Jr. & Soong (1999) algumas das vantagens do controle ativo em relação ao controle passivo são:

- Maior eficiência no controle da resposta;
- Relativa insensibilidade às condições locais e movimentos do solo;
- Aplicação no controle de vibrações causadas tanto por ventos fortes como terremotos;
- Possibilidade de seleção dos objetivos do controle a depender da necessidade, por exemplo: conforto humano em situações não-críticas e segurança estrutural durante carregamentos dinâmicos intensos.

Naturalmente, o controle ativo também possui desvantagens e limitações. Uma delas é a demanda de grandes quantidades de energia para geração das forças de controle que são usualmente de elevada magnitude no caso de estruturas civis, o que gera custos adicionais. Outra limitação é o fato de geralmente ocorrer falta de energia na ocasião de desastres naturais como terremotos e furações. Por último deve-se chamar atenção ao fato de que a manutenção do sistema de controle ativo encarece o custo de manutenção da obra.

No desenvolvimento de um sistema de controle ativo, uma das etapas fundamentais é a determinação de uma lei de controle apropriada. Essa lei é obtida através do algoritmo de controle. A literatura existente apresenta uma série desses algoritmos para este fim como, por exemplo:

- Controle ótimo linear clássico (Meirovitch, 1990; Soong 1990);
- Controle ótimo instantâneo (Yang et al 1987);
- Controle modal ou algoritmo de alocação de polos (Martin & Soong 1976; Chung *et al* 1989; Abdel-Rohman 1982);
- Controle modal independente no espaço (Meirovitch 1990; Soong 1990; Shelley *et al* 1995);
- Controle de estado limitado ou controle de pulso (Masri *et al* 1981; Reinhorn *et al* 1987; Miller *et al* 1988;Pantelides & Nelson 1995; Hung *et al* 2000);
- Controle previsto (López-Almansa et al 1994a; López-Almansa et al 1994b);
- Controle fuzzy (Symans & Kelly 1999);
- Controle estocástico (Housner et al 1997; Zhu et al 2000);
- Controle adaptável (Housner *et al* 1997; Ghanem *et al* 1997; Gatulli & Romeo 2000);
- Sliding mode control (Housner et al 1997; Wu & Yang 1998; Singh et al 1997; Sarbjeet & Datta 2000);
- Controle com redes neurais (Housner *et al* 1997; Ghaboussi & Joghataie 1995);
- Controle não-linear (Yang & Vongehavalitkul 1994; Meirovitch & Stemple 1997; Agrawal & Yang 1997; Shing *et al* 1996; Yang *et al* 1996a; Mahmoud *et al* 2000; Pinto 1999)

No presente trabalho foram utilizados os seguintes algoritmos de controle: controle ótimo linear clássico, controle ótimo instantâneo e controle ótimo nãolinear, que estão apresentados em maiores detalhes no Capítulo 4.

O controle ativo de estruturas de Engenharia Civil requer a habilidade, por parte do mecanismo de controle, de gerar forças de controle de grande magnitude em alta velocidade e tempos de reação curtos. Uma série de estudos foi realizada no projeto de mecanismos de controle que possam ser implementados a partir dos resultados teóricos, tanto em laboratório como em aplicações reais. Uma descrição sumária de alguns desses mecanismos pode ser encontrada em Avila (2001), entre eles pode-se citar:

- <u>Cabos Tensionados</u>: trata-se de um conjunto de cabos tensionados controlados por servomecanismos hidráulicos ou pneumáticos (Zuk, 1968; Chung *et al*, 1993; Lin *et al*, 1996; Yang, 1982; Yang & Samali, 1983; Chung *et al*, 1988 e 1989; Soong, 1990).
- <u>Contraventamento ativo</u>: Trata-se de um mecanismo bastante semelhante aos cabos tensionados em que, ao invés de cabos, são utilizados elementos rígidos que podem se expandir ou contrair longitudinalmente através do acoplamento de atuadores (Soong *et al*, 1991a; Reinhorn *et al*, 1993; Shing *et al*, 1996; Loh *et al*, 1999; Avila & Gonçalves, 2002).
- <u>Amortecedores de massa ativos (AMA)</u>: trata-se de um sistema oscilatório auxiliar, equipado com um atuador que consegue reduzir a resposta do sistema principal em uma faixa de freqüência mais ampla do que o AMS. Maiores detalhes sobre esse tipo de mecanismo podem ser encontrados no Capítulo 5 (Soong, 1990; Soong *et al* 1991b; Chang & Yang, 1995; Kwok & Samali, 1995; Ankireddi & Yang, 1996; Xu, 1996; Mackriell *et al*, 1997; Cao *et al*, 1998; Yan *et al*. 1999; Fujino *et al*, 1996; Spencer Jr. & Sain, 1997; Spencer Jr. & Soong, 1999).
- <u>Sistemas de rigidez variável</u>: Um sistema de rigidez variável utiliza controladores ativos que ajustam a rigidez estrutural de forma que os modos ressonantes da estrutura sejam diversos dos modos predominantes da excitação (Soong *et al* 1991b).
- <u>Geradores de pulso</u>: Tratam-se de dispositivos idealizados para implementação prática de algoritmos de controle por pulsos, gerando forças pela liberação de jatos de ar (Miller *et al*, 1988; Soong, 1990).
- <u>Apêndices Aerodinâmicos</u>: Uma das formas de utilização deste tipo de mecanismo é utilizando a energia do vento para controlar a estrutura que está sendo excitada pelo mesmo vento. Isso elimina a necessidade de suprimento de energia externa para produção das forças de controle necessárias, sendo que a única energia necessária é a utilizada na operação de posicionamento do apêndice (Soong *et al* 1991b).

<u>Materiais Inteligentes</u>: Os chamados materiais inteligentes são uma outra alternativa para controlar a resposta dinâmica estrutural. Estes possuem propriedades físicas atípicas interessantes que podem ser exploradas no controle de vibrações. Entre elas estão a capacidade de adaptar suas características estruturais, fazer auto diagnóstico, auto reparo, alterar sua forma e controlar o próprio movimento. Exemplos disso são: materiais piezoelétricos (Kang *et al* 1996, Trindade 2000), materiais com memória de forma (Birman *et al* 1996), fluidos eletroreológicos (Housner *et al* 1997).

1.3 Controle Híbrido

Uma forma de controle alternativa ao controle ativo e passivo surgiu mais recentemente, trata-se do controle híbrido que nada mais é do que uma combinação dos dois tipos anteriores. A vantagem está no fato deste sistema exigir forças de magnitudes bem menores nos atuadores, o que gera uma considerável redução no custo, além de um desempenho mais eficiente comparado ao sistema passivo, ampliando a faixa de freqüência em que o mesmo funciona de forma eficiente (Spencer Jr. & Sain, 1997; Tzan & Pantelides, 1994; Lee-Glauser *et al*, 1997; Avila & Gonçalves, 2002). Outra vantagem do controle híbrido é a de que, no caso de falta de energia, o seu componente passivo ainda oferece um certo grau de proteção à estrutura. Deve-se enfatizar ainda que, em controladores híbridos, a parcela ativa pode somente entrar em funcionamento quando a resposta da estrutura excede a capacidade de dissipação de energia da parcela passiva (Xue *et al.*, 1997). Esse tipo de controle será discutido mais a fundo no Capítulo 5.

Spencer Jr & Soong (1999) apresentam uma tabela com uma série de implementações em escala real já realizadas na prática, em países como Japão, Estados Unidos, Taiwan e China, utilizando controle ativo, híbrido e semi-ativo. A observação do comportamento dessas estruturas quando sujeitas à ventos fortes e movimentos na base têm fornecido preciosas informações na validação de simulações analíticas utilizadas para prever essa performance, entre outras coisas.

1.4 Controle Semi-ativo

Por último existem os controladores semi-ativos, que não adicionam energia ao sistema estrutural controlado, mas possuem propriedades, as quais, controladas de forma ótima, reduzem a resposta do sistema. Têm a vantagem de possuir a adaptabilidade dos controladores ativos sem demandar grandes quantidades de energia, podendo, em muitas aplicações, operar com baterias de emergência, no caso de falta de energia. Em suma, são uma espécie de dispositivos passivos controláveis (Symans & Constanttinou, 1999; Patten *et al*, 1998; Sadek & Mohraz, 1998; Jansen & Dyke, 2000).

1.5 Importância, objetivos e descrição do trabalho

Obstáculos devem ser superados antes que essa tecnologia de controle estrutural seja aceita de forma geral pelos profissionais de engenharia e construção, apesar dos estudos já realizados e do razoável número de aplicações práticas. Entre estes obstáculos estão: redução do custo e da manutenção; eliminação da dependência da potência externa; aumento da confiabilidade, eficiência e robustez, e aumento da receptividade de tecnologia não-tradicional. As estratégias de controle híbrido e semi-ativo são particularmente promissoras considerando-se tais metas. (Spencer Jr. & Sain, 1997).

Segundo a Associação Internacional para Controle Estrutural (IASC, *International Association for Structural Control*), no boletim de dezembro de 1998, existe um consenso na comunidade científica que o controle estrutural tem um grande potencial para melhorar a performance de estruturas existentes ou novas, se pesquisas apropriadas e estudos experimentais forem realizados.

No Brasil, ainda não estão difundidas aplicações práticas do controle estrutural, mas é uma área, que pela sua importância atual, tem atraído a atenção de vários pesquisadores no país, resultando na publicação de uma série de trabalhos recentes (Battista & Pfeil 1996; Cabral, 1997; Cabral & Riera 1997; Louroza 1997; Pinheiro 1997; Faísca 1998; Pinto 1999; Souza 1999; Sahlit & Avila 1999; Faísca *et al* 2001; Carneiro 2001; Battista *et al* 2002; Battista & Varella 2002; Bezerra *et al* 2002; Blandón & Battista 2002; Carvalho *et al* 2002; Cesari *et al* 2002; Curadelli & Riera 2002; Miguel & Riera 2002; Souza *et al* 2002; Aseka & Riera 2002).

Esta tese de doutorado faz parte da linha de pesquisa sobre Instabilidade e Dinâmica das Estruturas do Departamento de Engenharia Civil da PUC-Rio. Pretende-se fornecer uma contribuição na área de proteção de estruturas civis contra excitações dinâmicas indesejáveis. Por isso será realizado um estudo minucioso do comportamento de edifícios altos sob a ação de carregamentos dinâmicos. O mecanismo de controle adotado no presente trabalho foi o amortecedor de massa, sendo que a motivação para o estudo desse tipo de mecanismo se deve ao fato de uma série de amortecedores de massa sintonizados (AMS) passivos, ativos (AMA) e híbridos (AMH) terem sido instalados na prática (Holmes, 1995; Nishitani & Inoue, 2001), sem contudo terem sido levados em conta alguns aspectos importantes como, por exemplo: não-linearidade do amortecedor; uso de amortecedores de massa múltiplos com massas interligadas; otimização da força de controle através de estudo adequado das matrizes de ponderação do algoritmo de controle ótimo, entre outras coisas.

Foram desenvolvidos programas de computador específicos para análise dinâmica de estruturas no domínio do tempo, utilizando os algoritmos de Runge-Kutta de 4^ª ordem e de Newmark, além da implementação numérica dos algoritmos de controle utilizados. Os programas foram desenvolvidos em linguagem FORTRAN. Em paralelo foi utilizado o programa de álgebra simbólica MAPLE VI nos desenvolvimentos algébricos. Foram também utilizados programas desenvolvidos por del Prado (2001) na análise do comportamento de amortecedores de massa sintonizados não-lineares no Capítulo 2.

A presente de tese de doutorado constitui-se de sete capítulos e um apêndice, incluindo-se este de introdução, onde são apresentados conceito básicos, formulações utilizadas, resultados obtidos, conclusões e propostas de continuação da pesquisa, a saber:

No capítulo 2, apresenta-se uma descrição detalhada do amortecedor de massa sintonizado (AMS). Os princípios básicos para análise e projeto de sistemas estruturais com AMS são descritos inicialmente, em seguida são apresentados exemplos numéricos de utilização da técnica, em especial, em edifícios altos. Finalmente, analisa-se o comportamento de um AMS que possua rigidez não-linear, ilustrado através de um exemplo numérico.

O capítulo 3 aborda a utilização de amortecedores de massa múltiplos (AMSM), com o objetivo de cobrir uma faixa mais ampla de freqüência eficientemente. Realizou-se a investigação de parâmetros ótimos para este tipo de amortecedor instalado em estruturas sujeitas a carregamentos dinâmicos, além do estudo de como a influência da interligação das massas pode afetar sua eficiência. Finalmente, verificou-se a resposta dinâmica de estruturas equipadas com AMSM,

sujeitas a carregamentos com perturbações aleatórias. As conclusões obtidas são baseadas nos resultados provenientes dos exemplos numéricos apresentados ao longo de todo o capítulo.

O capítulo 4 se inicia com os conceitos básicos sobre o controle ativo, continuando, em seguida, com algumas considerações sobre problemas de ordem prática como, por exemplo, defasagem e erros de modelagem. Posteriormente é feita uma descrição dos algoritmos de controle linear escolhidos para o presente trabalho: controle ótimo linear clássico e controle ótimo instantâneo. Apresenta-se um exemplo numérico fazendo um estudo comparativo entre os algoritmos de controle ótimo clássico e controle ótimo instantâneo em sistemas forçados. Foram realizados diversos testes para escolha das melhores matrizes de ponderação em cada caso. Descreve-se a formulação do algoritmo de controle ótimo não-linear com representação indicial, e finalmente, uma aplicação numérica é apresentada a fim de demonstrar o potencial da utilização deste tipo de controle.

O capítulo 5 trata do controle híbrido abordando um mecanismo de controle em especial: o amortecedor de massa híbrido (AMH). São apresentadas as principais diferenças e vantagens do AMH em relação aos amortecedores de massa sintonizados (AMS) e, amortecedores de massa ativos (AMA). Uma série de exemplos numéricos são apresentados e entre outras coisas, estuda-se: (a) a influência da escolha das matrizes de ponderação na eficiência do AMH; (b) o desempenho do AMH em relação ao AMS e o AMA e (c) a influência da instalação de amortecedores viscofluidos em um sistema equipado com AMS. Foi realizado um estudo da influência dos parâmetros do AMH em seu desempenho. Como complemento, analisa-se a resposta dinâmica de uma estrutura equipada com um AMH ou não, em relação à critérios para níveis de vibração aceitáveis em edifícios disponíveis na literatura consultada. Finalmente, apresenta-se um exemplo numérico ilustrando a aplicação do algoritmo de controle ótimo não-linear com representação indicial aplicado a um sistema estrutural equipado com AMH.

No Capítulo 6 é realizado um estudo paramétrico de otimização, de forma a determinar as matrizes de ponderação para o algoritmo de controle ótimo instantâneo, no projeto de sistemas de controle híbrido utilizando o AMH. Esta otimização é realizada procurando minimizar a amplitude da resposta harmônica permanente da estrutura. A partir deste estudo sugere-se uma expressão da força de controle ótima para estruturas submetidas à excitações harmônicas equipadas com amortecedor de massa híbrido AMH.

O último capítulo se dedica às conclusões obtidas e às propostas para realização de trabalhos futuros.

Finalmente, no Apêndice A são descritos alguns critérios, disponíveis na literatura, para definição de níveis de vibração aceitáveis em estruturas de Engenharia Civil, que possam ser tolerados por seus ocupantes e não comprometam a segurança e integridade estrutural.

2 Amortecedor de Massa Sintonizado (AMS)

2.1 Introdução

O amortecedor de massa sintonizado (AMS) tem como objetivo reduzir a demanda de dissipação de energia dos membros estruturais submetidos a ação de carregamentos dinâmicos. Essa redução se dá transferindo-se parte da energia vibratória da estrutura para o AMS. Este, basicamente, consiste em um sistema massa-mola-amortecedor instalado na estrutura, como mostrado na Figura (2.1), de forma a oscilar aproximadamente na mesma freqüência da estrutura, mas com uma defasagem de fase.

Figura 2.1 - Estrutura com um AMS conectado

O AMS é um dos mais antigos dispositivos de controle estrutural existente, seu conceito datando de 1909 com o absorsor dinâmico de vibrações proposto por Frahm (Rana & Soong, 1998). Mais tarde, Den Hartog (1956) publica um estudo mais detalhado sobre o assunto. No entanto, muito do que foi desenvolvido limitava-se ao uso do AMS em sistemas de engenharia mecânica onde a freqüência de operação estivesse em ressonância com a freqüência fundamental da máquina. Estruturas de edifícios, no entanto, são sujeitas a carregamentos ambientais, como ventos e terremotos, que possuem muitos componentes de freqüência. A performance do AMS em um sistema complexo de muitos graus de liberdade e em estruturas de edifícios amortecidas é, em geral, diferente.

Foi a partir da década de 60 que se tornou comum a aplicação de AMS na Engenharia Civil, tendo uma grande quantidade de AMSs sido instalada em edifícios altos, pontes, torres e chaminés industriais para controle de vibrações causadas pelo vento. A primeira estrutura a receber esse tipo de tratamento foi o edifício Centerpoint Tower na Australia (Vickery & Davenport, 1970). Nos EUA pode-se citar o Citycorp Center em Nova York e o John Hancock Tower em Boston, entre outros. No Japão, os primeiros sistemas AMS foram instalados no Port Tower e no Funade Bridge Tower em Osaka (Housner *et al.* 1997). Exemplos adicionais de aplicações práticas dos AMS podem ser encontrados em Holmes (1995) e Kwok & Samali (1995).

Outra aplicação do AMS é na redução de vibrações causadas por utilização humana (Setareh & Hanson, 1992; Magluta, 1993). Um estudo do emprego dessa técnica de controle em estruturas sujeitas a carregamentos sísmicos pode ser encontrada em Kaynia *et al.* (1981), Villaverde & Koyama (1993) e Sadek *et al* (1997).

Em edifícios altos, a resposta do primeiro modo da estrutura com um AMS sintonizado na freqüência deste modo pode ser reduzida consideravelmente, mas, em geral, as respostas associadas aos modos mais altos é apenas levemente reduzida ou, até mesmo, amplificada. A fim de vencer esse tipo de limitação, mais de um AMS pode ser instalado na estrutura, cada um deles sintonizado em uma freqüência dominante (Housner *et al.*, 1997).

Ao adicionar-se o AMS, procura-se trazer a amplitude do pico de ressonância para o seu mais baixo valor possível, a fim de que amplificações menores ao longo de uma faixa mais ampla de freqüência próximo à de ressonância possam ser atingidas. Portanto, no projeto do AMS, procura-se determinar seus parâmetros de forma a obter uma solução ótima, isto é, o menor pico de ressonância. A técnica de otimização de Den Hartog foi desenvolvida com o objetivo de minimizar o deslocamento da estrutura, considerando um sistema não-amortecido submetido a uma excitação harmônica senoidal. Seu estudo forneceu expressões para determinação dos parâmetros ótimos do AMS como será visto a seguir.

2.2 Princípios básicos

As equações de movimento de um sistema de um grau de liberdade sujeito à uma ação dinâmica externa f(t) com um AMS instalado são dadas por

$$M y_1(t) + C y_1(t) + K y_1(t) = c z(t) + k z(t) + f(t)$$
(2.1)

$$mz(t) + cz(t) + kz(t) = -my_1(t) + g(t)$$
(2.2)

onde $y_1(t)$ é o deslocamento relativo do sistema estrutural, de massa M, em relação à base; z(t) o deslocamento relativo da massa m do AMS em relação à estrutura; Ce K o amortecimento e a rigidez do sistema principal, respectivamente; c e k o amortecimento e rigidez do AMS e g(t) é uma força aplicada à base da estrutura. A parcela g(t) é igual à zero para o caso de excitações de vento; no caso de excitações sísmicas $g(t) = \mu f(t)$, sendo $\mu = m/M$, a razão entre as massas.

Considere o caso de carregamento $f(t) = F_0 e^{i\omega t}$ e assuma uma solução permanente do tipo

$$y_1(t) = Y_1 e^{i\omega t} \tag{2.3}$$

$$z(t) = Ze^{i\omega t} \tag{2.4}$$

onde Y_1 é a amplitude da vibração do sistema principal e Z a amplitude da vibração do AMS. Substituindo (2.3) e (2.4) nas equações (2.1) e (2.2) obtém-se a expressão da resposta no tempo do sistema principal

$$y_1(t) = \frac{(k - \omega^2 m + i\omega c)F_0 e^{i\omega t}}{[K + k - \omega^2 M + i\omega(C + c)](k - \omega^2 m + i\omega c) - (k + i\omega c)^2}$$
(2.5)

O chamado fator de magnificação dinâmica do sistema principal, *R*, pode ser expresso por

$$R = \frac{KY_1}{F_0} = \sqrt{\frac{A^2 + B^2}{C^2 + D^2}}$$
(2.6)

onde

$$A = \alpha^2 - \beta^2 \tag{2.7}$$

$$B = 2\xi_2 \alpha \beta \tag{2.8}$$

$$C = \alpha^{2} (1 - \beta^{2}) - \mu \alpha^{2} \beta^{2} - \beta^{2} (1 - \beta^{2}) - 4\xi_{1} \xi_{2} \alpha \beta^{2}$$
(2.9)

$$D = 2\xi_2 \beta \alpha (1 - \beta^2 - \mu \beta^2) + 2\xi_1 \beta (\alpha^2 - \beta^2)$$
(2.10)

sendo ξ_1 e ξ_2 as taxas de amortecimento do sistema principal e do AMS respectivamente; α a razão entre as freqüências naturais do AMS e do sistema principal; μ a razão entre as massas do AMS e do sistema principal e β a razão entre a freqüência da excitação e a freqüência natural do sistema principal.

Fazendo com que o amortecimento do sistema principal seja nulo ($\xi_1 = 0$), pode-se obter as expressões ótimas clássicas para os parâmetros do sistema apresentadas por Den Hartog (1956). Existem dois valores de β onde o fator *R* independe da taxa de amortecimento ξ_2 , chamados pontos invariantes *P* e *Q*, como pode-se observar através da Figura (2.2). Estes pontos existem porque *A* e *C* independem de ξ_2 e *B* e *D* são proporcionais a ξ_2 fazendo com que a resposta seja independente de ξ_2 se *A*/*C* = *B*/*D*, o que ocorre nos pontos *P* e *Q*.

Figura 2.2 - Fator de amplificação em função de β (μ = 0.05, α = 1) (Soong & Dargush, 1997)

A partir dessa relação obtém-se uma expressão quadrática em β^2 para as freqüências dos pontos invariantes. Ao otimizar-se essa relação fazendo com que as respostas correspondentes aos pontos invariantes coincidam, as freqüências nesses pontos são dadas por

$$\beta^{2}_{1,2} = \left(\frac{1}{1+\mu}\right) \left[1 \pm \left(\frac{\mu}{2+\mu}\right)^{\frac{1}{2}}\right]$$
(2.11)

A razão de sintonia ótima é neste caso

$$\alpha_{\acute{otimo}} = \frac{1}{1+\mu} \tag{2.12}$$

e a resposta nos pontos invariantes

$$R_{\acute{o}timo} = \sqrt{1 + \frac{2}{\mu}}$$
(2.13)

Se a inclinação da curva de resposta for igualada a zero em cada um dos pontos invariantes o amortecimento do AMS é dado por

$$\xi_2^2 = \frac{\mu \left[3 \pm \left\{ \frac{\mu}{\mu + 2} \right\}^{\frac{1}{2}} \right]}{8(1+\mu)}$$
(2.14)

Segundo Den Hartog (1956), uma boa estimativa para ξ ótimo é o valor médio da equação (2.14)

$$\xi_{\text{otimo}} = \sqrt{\frac{3\mu}{8(1+\mu)}} \tag{2.15}$$

Warburton & Ayonride (1980) realizaram um estudo do efeito da consideração do amortecimento do sistema principal (ξ_1) na obtenção dos valores ótimos das propriedades do amortecedor. Os parâmetros ótimos para sistemas submetidos a alguns casos de excitações harmônicas e aleatórias são apresentados na Tabela (2.1) (Warburton, 1982). Na maior parte dos casos, os valores obtidos não são muito diferentes daqueles obtidos pelas expressões do Den Hartog, já que em edifícios o nível de amortecimento da estrutura é em geral baixo.

Podem-se adotar outros critérios para dimensionar de forma ótima o AMS, como, por exemplo, minimizar a aceleração estrutural, já que grandes acelerações da estrutura sob excitações dinâmicas produzem efeitos indesejáveis no funcionamento de componentes não estruturais e conforto dos ocupantes. De forma similar, muitos outros critérios são possíveis e foram considerados por diferentes pesquisadores. Alguns deles são: deslocamento mínimo da estrutura, rigidez dinâmica máxima da estrutura principal, máximo amortecimento efetivo do sistema estrutura/AMS, um critério misto envolvendo sintonia da freqüência utilizando critério de deslocamento mínimo e determinação do amortecimento do AMS utilizando o critério do máximo amortecimento efetivo; viagem mínima da massa relativa do amortecedor em relação à estrutura principal; velocidade

Caso	Excitação	R _{ótimo}	α _{ótimo}	ξótimo
1	$P_0 e^{i\omega t}$ (Força)	$\sqrt{1+\frac{2}{\mu}}$	$\frac{1}{1+\mu}$	$\sqrt{\frac{3\mu}{8(1+\mu)}}$
2	$X_{g}e^{i\omega t}$ (Aceleração. na base)	$\sqrt{\frac{2}{\mu}(1+\mu)}$	$\frac{\sqrt{1+\frac{\mu}{2}}}{1+\mu}$	$\sqrt{\frac{3\mu}{8(1+\mu)(1-\mu/2)}}$
3	Força Aleatória	$\sqrt{\frac{1+3\mu/4}{\mu(1+\mu)}}$	$\frac{\sqrt{1+\mu/2}}{1+\mu}$	$\sqrt{\frac{\mu(1+3\mu/4)}{4(1+\mu)(1+\mu/2)}}$
4	Aceleração. na base aleatória	$(1+\mu)^{3/2}\sqrt{\frac{1}{\mu}-\frac{1}{4}}$	$\frac{\sqrt{1-\mu/2}}{1+\mu}$	$\sqrt{\frac{\mu(1-\mu/4)}{4(1+\mu)(1-\mu/2)}}$

mínima da estrutura principal; aceleração mínima da estrutura principal e força mínima da estrutura principal do pórtico (Soong & Dargush, 1997).

Tabela 2.1 – Parâmetros ótimos do AMS considerando o amortecimento do sistema principal (Warburton, 1982)

Conhecidos os parâmetros ótimos, parte-se para a análise estrutural, podendo-se utilizar os recursos da análise modal.

A fim de validar as conclusões sobre a eficiência deste tipo de dispositivo, obtidas através da análise numérica, foram realizados programas experimentais tanto em modelos reduzidos como em escala real. Uma descrição de alguns dos ensaios realizados e suas principais conclusões podem ser encontrados em Soong & Dargush, (1997).

Vale ressaltar ainda que no projeto de estruturas controladas por este tipo de mecanismo passivo alguns aspectos de caráter prático devem ser levados em conta, como, por exemplo:

- a quantidade de massa que pode ser instalada no topo do edifício;
- a acomodação do deslocamento relativo da massa;
- superfície que repousa a massa auxiliar com pouco atrito para que a massa possa responder ao movimento do edifício em níveis baixos de excitação.

2.3 Sistemas com vários graus de liberdade

2.3.1 Sistema completo

Considere um sistema de N graus de liberdade com um dispositivo AMS instalado e sujeito à uma excitação externa qualquer, como mostra a Figura (2.3)

Figura 2.3 - Sistema com *N* graus de liberdade com AMS instalado

As equações de movimento desse sistema de N + 1 graus liberdade são dadas na forma

$$M \ddot{y}(t) + C \dot{y}(t) + Ky(t) = F(t) + D' p(t)$$
(2.16)

$$mz(t) + cz(t) + kz(t) = -my_N + g(t)$$
(2.17)

onde *M*, *C* e *K* são as matrizes de massa, amortecimento e rigidez da estrutura, respectivamente; F(t) e g(t) os carregamentos dinâmicos aplicados sobre a estrutura e o AMS, respectivamente; $y_i(t)$ é o deslocamento da *i*-ésima massa em relação ao solo; z(t) é o deslocamento do AMS em relação ao andar onde o mesmo se encontra instalado; p(t) = c z(t) + kz(t); e *D'* representa o vetor de localização do AMS. O componente d_i do vetor *D'* é dado por

$$d_{j} = \begin{cases} 0, j \neq k \\ 1, j = k \end{cases}$$
(2.18)

sendo k o andar onde está instalado o AMS, no caso do AMS instalado no último andar k = N. No caso específico da excitação sísmica $F(t) = -M e X_g^{"}(t)$ e $g(t) = -m X_g^{"}(t)$, onde e é um vetor composto de números 1 e $X_g^{"}(t)$ é a aceleração na base.

2.3.2 Sistema reduzido a um grau de liberdade

No caso de sistemas de vários graus de liberdade como edifícios altos, a resposta estrutural pode ser obtida através de um modelo reduzido lançando mão da análise modal.

Como foi dito anteriormente o AMS tem uma performance eficiente no caso de estruturas que vibrem predominantemente em torno de um único modo, pode-se então aproximar o vetor da resposta dinâmica y(t), representando-o por uma única coordenada y_N e um modo ϕ_1

$$= \mathbf{\phi}_1 \, y_N \tag{2.19}$$

Substituindo a equação (2.19) na equação (2.16) e pré-multiplicando (2.16) por ϕ_1^T a equação de movimento (2.16) se torna

V

$$M_{1}^{*} \overset{"}{y}_{N}^{*} + C_{1}^{*} \overset{'}{y}_{N}^{*} + K_{1}^{*} y_{N}^{*} = \left(c \overset{'}{z} + kz\right) p_{1}^{T} + f(t)$$
(2.20)

onde $M_1^* = \phi_1^T M \phi_1$ é a massa modal; $C_1^* = M_1^* 2\xi_1 \omega_1$ e $K_1^* = M_1^* \omega_1^2$, ξ_1 e ω_1 são a taxa de amortecimento e a freqüência natural do modo em questão; e f(t) a excitação dinâmica. No caso particular de cargas de terremoto $f(t) = -\Gamma_1 M_1^* X_g^{(t)}$, onde o fator de participação é expresso na forma

$$\Gamma_{1} = \frac{\phi_{1}^{T} M \mathbf{e}}{\phi_{1}^{T} M \phi_{1}}$$
(2.21)

onde $e \in um$ vetor $n \ge 1$ com todos os elementos iguais a 1.

Comparando-se (2.17) e (2.20) com as equações (2.2) e (2.1) percebe-se que a representação modal do sistema de vários graus de liberdade é equivalente à de um grau de liberdade, exceto pelo fato de que a massa, rigidez e amortecimento modais são utilizados ao invés dos parâmetros físicos da massa principal. A razão entre as massas nesse caso é definida por $\mu = m/M_1^*$.

Em geral trata-se de uma boa representação para edifícios altos, já que as freqüências, nesse caso, são bem espaçadas, além de ser particularmente favorável à implementação do controle ativo.

2.4 Exemplos numéricos

Exemplo 2.1

Considera-se o sistema estrutural (*shear frame*) analisado anteriormente por Claret & Venancio (1991) e Avila (1997), apresentado na Figura (2.4), representando um edifício de dois andares com um AMS instalado no topo. As propriedades do sistema são as seguintes: rigidez $k_1 = k_2 = 10$ MN/m; massa $m_1 = m_2 = 10000$ kg . O amortecimento do sistema considerado é o estrutural, aproximado pelo amortecimento de Rayleigh, utilizando taxas de amortecimento $\xi = 2\%$. As freqüências naturais de vibração são $\omega_1 = 19.54$ rad/s (3.1 Hz) e $\omega_2 = 51.17$ rad/s (8.2 Hz) e o carregamento aplicado consiste em um pulso de carga senoidal $F(t) = 10^3$ sen 19.5t N aplicado durante um intervalo de tempo de 0.32 s. As propriedades modais do sistema, utilizadas neste exemplo somente para dimensionamento do AMS, são: $M_1^* = 36179.56$ kg; $C_1^* = 28283.66$ Ns/m e $K_1^* = 1.382 \times 10^7$ N/m. As propriedades do AMS, dimensionado a partir das expressões ótimas de Den Hartog, com uma relação entre massas $\mu = 0.01$, são:m = 361.8 kg; k = 135470.68 N/m e c = 853.18 Ns/m.

Figura 2.4 – Sistema estrutural com dois graus de liberdade com AMS instalado

O objetivo deste exemplo é verificar os programas desenvolvidos e confirmar a eficiência da instalação de um AMS em controlar a resposta dinâmica da estrutura excitada por um pulso de carga harmônico. A resposta *rms* (*root mean square*) fornece uma medida da tendência central dos valores da resposta no tempo através da raiz quadrada da média no tempo do quadrado de determinada grandeza. Para um deslocamento y(t) o valor RMS é dado pela equação (Inman, 1995)

$$y_{RMS} = \sqrt{\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} y^{2}(t) dt}$$
(2.22)

A Tabela (2.2) apresenta a resposta máxima e os valores *rms*, calculados durante os 3 primeiros segundos da resposta, do sistema sem controle e com o AMS, e as Figuras (2.5) e (2.6) mostram a evolução dos deslocamentos do primeiro e segundo andar sem controle e com a utilização do AMS.

Andar	$d_{m \acute{a} x} ({ m mm})$	$d_{m \acute{a} x} ({ m mm})$	v _{máx} (mm/s)	v _{máx} (mm/s)	$a_{m \dot{a} x} (\mathrm{mm/s}^2)$	$a_{m \dot{a} x} (\mathrm{mm/s}^2)$
	(s/ cont.)	(AMS)	(s/ controle)	(AMS)	(s/ controle)	(AMS)
1	0.350	0.135	6.925	3.467	154.295	96.953
2	0.557	0.218	10.488	5.609	257.402	156.869
Andar	d_{rms} (mm)	d_{rms} (mm)	v _{rms} (mm/s)	v _{rms} (mm/s)	$a_{rms} (\mathrm{mm/s^2})$	$a_{rms} (\mathrm{mm/s^2})$
	(s/ cont.)	(AMS)	(s/ controle)	(AMS)	(s/ controle)	(AMS)
1	0.158	0.035	3.076	0.794	61.311	20.268
2	0.256	0.057	4.950	1.286	96.870	32.793

Tabela 2.2 - Valores máximos e *rms* da resposta dinâmica sem controle e utilizando AMS

Analisando-se estes resultados, verifica-se que este AMS dimensionado a partir das expressões ótimas de Den Hartog, atinge os seus objetivos reduzindo consideravelmente tanto a sua resposta máxima como também a resposta *rms*. Verifica-se através dos resultados uma redução acentuada não só dos deslocamentos, variável base da otimização feita por Den Hartog, mas também das velocidades e acelerações. Observa-se nas Figuras (2.5) e (2.6) que, desde o início da resposta no tempo já ocorre uma diferença sensível entre a resposta

controlada e a não controlada, convergindo a resposta controlada rapidamente para a configuração de equilíbrio estático.

Figura 2.5 - Evolução do deslocamento d₁ sem controle e com AMS

Figura 2.6 - Evolução do deslocamento d₂ sem controle e com AMS

O valor da relação entre massas μ é de fundamental importância no projeto do AMS. As Figuras (2.7) a (2.12) apresentam os valores de deslocamentos, velocidades e acelerações máximas e *rms*, normalizados em relação à resposta sem controle, variando-se os valores de μ dentro de uma faixa aceitável em projeto de edifícios. Em seguida, a Figura (2.13) mostra a evolução no tempo do deslocamento do segundo andar variando-se a massa do AMS. Verifica-se que a resposta máxima, com o aumento da massa do AMS, sofre apenas uma pequena redução para os valores mais altos de μ . No caso da resposta *rms* essa redução ocorre de forma mais significativa ao longo de todo o intervalo. Pode-se concluir que quanto maior a massa do AMS melhor é a sua eficiência, principalmente no controle da resposta *rms* da estrutura. No entanto deve-se chamar a atenção para a existência de considerações práticas importantes envolvidas como, por exemplo, o máximo deslocamento do AMS permitido, além da questão da disponibilidade de espaço no edifício para instalação do amortecedor e, principalmente, o valor da massa aceitável em um dado projeto estrutural.

Figura 2.7 – Deslocamentos máximos normalizados de cada andar variando-se μ

Figura 2.8 – Velocidades máximas normalizadas de cada andar variando-se $\boldsymbol{\mu}$

Figura 2.9 – Acelerações máximas normalizadas de cada andar variando-se μ

Figura 2.10 – Deslocamentos rms normalizados de cada andar variando-se μ

Figura 2.11 – Velocidades rms normalizadas de cada andar variando-se μ

Figura 2.12 – Acelerações rms normalizadas de cada andar variando-se μ

Figura 2.13 – Evolução do deslocamento d₂ variando a massa do AMS

Na prática sempre existe devido a diversos fatores, como por exemplo, um possível atrito entre a massa do AMS e a sua superfície de apoio, um certo lapso de tempo entre o momento em que a força é aplicada sobre a estrutura e o momento em que o AMS começa a vibrar. Este atraso é prejudicial e deve ser minimizado na prática. Para se mensurar o efeito do atraso no controle, analisou-

se a resposta no tempo da estrutura submetida a um carregamento harmônico contínuo $F(t) = 10^3$ sen 19.5t N considerando-se que ocorresse um atraso no início do movimento do AMS. Este atraso foi modelado numericamente considerando que durante a sua duração a rigidez do AMS tendesse ao infinito. Utilizou-se o AMS com uma relação entre massas $\mu = 0.01$, sendo assim suas propriedades: m = 361.8 kg; k = 135470.68 N/m e c = 853.18 Ns/m.

Inicialmente, apresenta-se na Figura (2.14) a evolução no tempo do deslocamento do primeiro andar sem controle e com o AMS sem considerar atraso Verifica-se a excelente performance do AMS na redução tanto da resposta máxima como também da resposta permanente da estrutura.

Figura 2.14 - Evolução do deslocamento do primeiro andar sem controle e com AMS

Em seguida na Tabela (2.3) apresentam-se a redução do deslocamento máximo e *rms* do segundo andar em relação a resposta sem controle, nos casos do AMS sem atraso, e do AMS com atraso, considerando diversos valores de duração do atraso comparado com o período da excitação.

Verifica-se que quanto mais longa a duração do atraso, mais a eficiência do AMS é prejudicada, principalmente na redução da resposta máxima. Sendo assim, a partir destes resultados, pode-se concluir que a existência do atraso pode influenciar bastante a performance deste tipo de controle passivo. Isso chama a atenção para a necessidade de manutenção periódica deste tipo de equipamento

	Δ (%) $d_{2 \max}$	Δ (%) $d_{2 rms}$
AMS s/ atrito	74.93	73.04
$\Delta t_{\rm atraso} = 0.08 \mathrm{s} (T/4)$	74.97	72.96
$\Delta t_{\rm atraso} = 0.16 \text{ s} (T/2)$	72.39	72.35
$\Delta t_{ m atraso} = 0.32 \ { m s} \ (T)$	64.97	70.44
$\Delta t_{\rm atraso} = 0.64 \text{ s} (2T)$	29.95	56.84

reduzindo, por exemplo, o aumento do atrito entre o AMS e a sua superfície de apoio com o decorrer do tempo

Tabela 2.3 – Redução do deslocamento do segundo andar

Exemplo 2.2

Considere agora o sistema de dez graus de liberdade apresentado na Figura (2.15a), submetido a uma aceleração na base correspondente à componente E-W do terremoto de Loma Prieta, na Califórnia, ocorrido em Foster City em 17 de outubro de 1989. Este exemplo foi analisado anteriormente por Villaverde & Koyama (1993). As propriedades de massa e rigidez da estrutura e as freqüências naturais de vibração são apresentadas na Tabela (2.4) e Figura (2.15b), respectivamente. A taxa de amortecimento do modo fundamental é admitida como sendo de 2 % do valor crítico e assume-se a matriz de amortecimento da estrutura proporcional à sua matriz de rigidez.

A resposta dinâmica do edifício no tempo é obtida inicialmente sem nenhum tipo de controle através de integração numérica, utilizando o método de Newmark. Em seguida analisa-se a resposta utilizando um AMS instalado no último andar com propriedades sugeridas por Villaverde & Koyama (1993), a saber: massa m = 19 Mg; constante de rigidez k = 0.188 MN/m e coeficiente de amortecimento c = 0.024 MNs/m (taxa de amortecimento de 20%). Em ambos os casos analisou-se o sistema completo com vários graus de liberdade.

Objetiva-se com este exemplo validar rotinas implementadas e resultados obtidos, comparando-os com os apresentados por Villaverde & Koyama (1993) além de verificar o comportamento do AMS no caso de carregamentos sísmicos.

(a)

Figura 2.15 - (a) Edifício de dez andares; (b) Freqüências naturais de vibração

Andar	Rigidez k (MN/m)	Massa <i>m</i> (Mg)
1	62.47	179
2	59.26	170
3	56.14	161
4	53.02	152
5	49.91	143
6	46.79	134
7	43.67	125
8	40.55	116
9	37.43	107
10	34.31	98

Tabela 2.4 – Propriedades da Estrutura

Os valores dos deslocamentos máximos da estrutura, em cada andar, sem controle e com o AMS obtidos na literatura e no presente trabalho são apresentados na Tabela (2.5). Em seguida, a Figura (2.16) mostra a forma dos três primeiros modos de vibração do edifício sem controle e com AMS, onde se pode observar a influência deste tipo de controle.

	S/controle	S/controle	AMS (20%)	AMS (20%)
	VillaVerde & Koyama	Presente	Villaverde & Koyama	Presente
	(1993)	Trabalho	(1993)	Trabalho
1	0.042	0.042	0.040	0.040
2	0.080	0.080	0.077	0.076
3	0.114	0.115	0.110	0.109
4	0.143	0.145	0.140	0.138
5	0.167	0.171	0.168	0.166
6	0.191	0.196	0.196	0.193
7	0.215	0.219	0.221	0.216
8	0.235	0.238	0.244	0.240
9	0.253	0.258	0.261	0.259
10	0.263	0.269	0.271	0.270

Tabela 2.5 – Deslocamento máximo de cada andar em metros

Observando-se os valores dos deslocamentos máximos sem controle e com a utilização do AMS, verifica-se que não ocorre praticamente redução, havendo inclusive em alguns casos leves acréscimos na resposta máxima. Villaverde & Koyama (1993) justificam que isto se deve ao fato do amortecedor aumentar a taxa de amortecimento no modo fundamental da estrutura, e, neste caso, o terremoto de Foster City não excita o modo fundamental. Ainda segundo Villaverde & Koyama (1993) o fato do AMS não reduzir a resposta igualmente para todas as possíveis excitações na base não deve levar à falsa conclusão de que esta técnica não é uma alternativa eficiente na proteção contra abalos sísmicos. Obteve-se uma boa comparação dos resultados, validando as rotinas de análise implementadas.

A Tabela (2.6) mostra uma comparação entre os resultados apresentados por Villaverde & Koyama (1993) e os obtidos utilizando a técnica da redução modal apresentada anteriormente. As propriedades modais do sistema são: $M_I^* = 589100.33$ kg; $C_1^* = 74797.0$ Ns/m e $K_I^* = 0.5935$ x 10⁷ N/m. Pelo fato desta técnica tratar-se de uma aproximação observa-se uma leve discrepância entre os resultados.

Andar	$d_{\max}(\mathbf{m})$	$d_{\max}(\mathbf{m})$	Δ (%)
	Villaverde &	Redução Modal	
	Koyama (1993)		
1	0.040	0.035	12.5
2	0.077	0.070	10.0
3	0.110	0.105	4.5
4	0.140	0.139	0.7
5	0.168	0.171	1.8
6	0.196	0.200	2.0
7	0.221	0.225	1.8
8	0.244	0.245	0.4
9	0.261	0.260	0.4
10	0.271	0.267	1.5

Tabela 2.6 – Comparação da resposta máxima

Exemplo 2.3

Considere o *shear-frame* de 10 andares do exemplo anterior agora submetido a um pulso de carga harmônico $F = F_{\theta} \operatorname{sen}(\omega t)$ N, aplicado durante 2s, onde ω é primeira freqüência natural ($\omega = 3.174 \text{ rad/s}$) e F_0 é um vetor de amplitudes proporcional ao primeiro modo de vibração da estrutura.

$$\boldsymbol{F}_{\theta} = \begin{bmatrix} 645.56\\ 1306.81\\ 1965.70\\ 2604.37\\ 3204.44\\ 3747.71\\ 4216.14\\ 4592.15\\ 4858.80\\ 5000.00 \end{bmatrix}$$

A Figura (2.17) mostra a evolução no tempo do deslocamento do décimo andar d_{10} sem controle (obtida através do método de Newmark) e com o AMS, utilizando os parâmetros sugeridos por Villaverde & Koyama (1993). Verifica-se

que o AMS causa uma redução de 5.2 % na resposta máxima e de 19.3% na resposta *rms*.

Figura 2.17 - Evolução do deslocamento do décimo andar (pulso de carga)

Submetendo-se a estrutura à uma carga harmônica aplicada continuamente no tempo $F = F_{\theta} \operatorname{sen}(\omega t)$ em N, onde $\omega = 3.0 \operatorname{rad/s} e F_0$ é um vetor de amplitudes proporcional ao primeiro modo de vibração da estrutura verifica-se, respectivamente, um decréscimo de 39.2% e 21.7% na resposta máxima e na resposta *rms* do deslocamento do décimo andar com a utilização do AMS. A Figura (2.18) apresenta a evolução no tempo do deslocamento do décimo andar d_{10} sem controle (obtida através do método de Newmark) e com o AMS instalado, utilizando os parâmetros sugeridos por Villaverde & Koyama (1993). Verifica-se que para estes dois outros casos de carregamento os resultados são satisfatórios pelo fato dos mesmos excitarem o modo fundamental da estrutura. Outra observação interessante é que no caso do pulso de carga o AMS melhora a resposta *rms* mas não reduz de forma considerável o pico da resposta, que ocorre no transiente, não havendo assim tempo para absorver-se a energia. Já no caso da carga aplicada continuamente a redução maior ocorre na resposta máxima e a resposta *rms* sofre uma redução menor, ainda que significativa.

Figura 2.18 - Evolução do deslocamento do décimo andar (carga contínua)

A Tabela (2.7) apresenta os deslocamentos, velocidades e acelerações *rms* controlados, nos dois casos de carregamento, com estes valores verifica-se no espectro de resposta de vibração para efeitos nas pessoas e na estrutura da Figura (A.2) do Apêndice A, que em ambos os casos de carregamento não ocorrem danos à estrutura. No caso da estrutura excitada pelo pulso de carga o nível de vibração encontra-se próximo ao limiar da percepção humana, já no segundo caso de carregamento este nível já pode ser percebido, mas ainda não causa desconforto para longa exposição.

	d_{rms} (mm)	v_{rms} (mm/s)	$a_{rms} (\mathrm{mm/s}^2)$
Pulso de Carga	0.5359	1.6493	5.7449
Carga contínua	1.5504	4.7881	14.4812

Tabela 2.7 – Resposta rms do décimo andar da estrutura controlada nos dois casos de carregamento

Exemplo 2.4

Para a estrutura analisada anteriormente nos exemplos 2.2 e 2.3 foi realizado um estudo do comportamento da resposta variando-se a posição do AMS do primeiro ao décimo andar para os seguintes casos de carregamento:

- (a) terremoto de Loma Prieta;
- (b) carga harmônica com amplitude proporcional ao primeiro modo (pulso de carga $F(t) = F_0 \text{sen}(3.142t)$ N, aplicado durante os primeiros 2 s, e carga aplicada continuamente $F(t) = F_0 \text{sen}(3.0t)$ N);
- (c) carga harmônica com distribuição ao longo da altura na forma do segundo modo (pulso de carga $F(t) = F_0 \text{sen}(3.142t)$ N, aplicado durante os primeiros 2 s, e carga aplicada continuamente $F(t) = F_0 \text{sen}(3.0t)$ N);

Caso (a) de carregamento

As Figuras (2.19a) e (2.19b) apresentam as respostas máximas e *rms* normalizadas com respeito ao deslocamento do décimo andar sem controle, respectivamente para o caso (a) de carregamento. A análise dos resultados mostra que não se consegue uma redução muito significativa em nenhum dos casos. Por exemplo, no caso da redução dos deslocamentos máximo do décimo andar a melhor posição seria colocar o AMS no primeiro andar obtendo-se uma redução de apenas 0.21% no pico da resposta, o que é irrisório. Sendo que as demais configurações até majoram este deslocamento Na resposta *rms* a melhor redução ocorre com o AMS instalado no décimo andar e é da ordem de 12.5%. Convém ressaltar que, como já observado anteriormente, o AMS, como projetado por Villaverde & Koyama (1993), não apresenta bons resultados para este tipo de carregamento.

Para o mesmo caso de carregamento verificou-se o que ocorria modificando-se os parâmetros do AMS, adotando-se desta feita os parâmetros ótimos sugeridos por Den Hartog. Estes resultados são apresentados nas Figuras (2.20a) e (2.20b). Aqui a redução se torna mais significativa. Por exemplo, analisando a redução do deslocamento do décimo andar a melhor posição seria colocar o AMS no sétimo andar, obtendo-se uma redução de 13% no pico da resposta e de 31.2% na resposta *rms*. No entanto, analisando a configuração geral, observa-se que o AMS instalado no décimo andar reduziria a resposta máxima e a resposta *rms* em todos os andares sem exceção de forma bastante eficiente. Observa-se que esta solução produziria as maiores reduções em todos os andares, exceto no deslocamento máximo do décimo andar.

Figura 2.19 – Caso (a) de carregamento (Villaverde & Koyama, 1993): (a) deslocamentos máximos; (b) deslocamentos *rms*

Figura 2.20 – Caso (a) de carregamento: Parâmetros de Den Hartog (a)Deslocamentos máximos; (b) Deslocamentos *rms*

Caso (b) de carregamento (pulso de carga)

Neste caso de carregamento, como já foi dito anteriormente, o AMS não é eficiente na redução do pico da resposta, independendo da posição do mesmo. Porém, no caso da redução da resposta *rms*, nono e décimo andar são as melhores posições para o amortecedor, gerando uma redução em torno de 30% em relação à resposta sem controle como mostram as Figuras (2.21a) e (2.21b).

Caso (b) de carregamento (Carga contínua)

Aplicando-se o carregamento harmônico continuamente verificou-se que as melhores posições para o AMS encontram-se também nos dois últimos andares como se pode perceber através das Figuras (2.22a) e (2.22b). Neste caso observam-se reduções significativas tanto no deslocamento máximo quanto no valor *rms*.

Figura 2.21 – Caso (b) de carregamento (pulso de carga): (a)Deslocamentos máximos; (b) Deslocamentos *rms*

Figura 2.22 – Caso (b) de carregamento (carga contínua): (a)Deslocamentos máximos; (b) Deslocamentos *rms*

Caso (c) de carregamento (Pulso de carga)

Novamente no caso de pulso de carga o AMS não apresenta reduções significativas na resposta máxima. Analisando-se as configurações no caso de resposta *rms* as melhores posições para o amortecedor são nos últimos andares, sendo que o AMS instalado no décimo andar é capaz de reduzir em mais de 20% essa resposta no último andar. Os resultados normalizados para este caso de carregamento estão apresentados nas Figuras (2.23a) e (2.23b).

Caso (c) de carregamento (Carga contínua)

Da mesma forma que nos casos anteriores, como pode-se observar nas Figuras (2.24a) e (2.24b), para este caso de carregamento, as posições mais eficientes para o AMS são os últimos andares. Como já observado anteriormente, em casos de pulsos de carga, O AMS só afeta de forma significativa o valor *rms*. Já para cargas contínuas, ou que atuem durante um certo número de períodos, nota-se reduções significativas tanto nos valores máximos quanto nos valores *rms*.

Analisando os seis casos estudados conjuntamente, pode-se concluir que a posição de instalação do AMS é um fator preponderante na eficiência do mesmo, vale ressaltar que a posição mais apropriada para a colocação do AMS em uma

estrutura genérica deve ser estudada baseada no tipo de estrutura, nas propriedades da mesma e no carregamento aplicado.

Figura 2.23 – Caso (c) de carregamento (pulso de carga): (a)Deslocamentos máximos; (b) Deslocamentos *rms*

Figura 2.24 – Caso (c) de carregamento (carga contínua): (a)Deslocamentos máximos; (b) Deslocamentos *rms*
2.5 AMS com rigidez não-linear

Muitos dos sistemas de controle passivo usados na prática, apesar de serem analisados em sua maioria como sistemas lineares, apresentam sempre um certo grau de não-linearidade. Esta não-linearidade pode acarretar tanto ganho quanto perda de rigidez. Neste ítem pretende-se estudar como a não-linearidade do AMS, proveniente da geometria ou da lei constitutiva do material, pode afetar o comportamento do sistema principal. Estudos anteriores sobre amortecedores não-lineares são raros na literatura. Na literatura pesquisada foram encontrados apenas o estudo feito por Carter & Liu (1961) nos anos 60 e os trabalhos publicados recentemente por Veprik & Babitsky (2001) e Williams *et al.* (2002). O estudo realizado e os resultados obtidos, apresentados a seguir, foram publicados recentemente (Avila *et al* 2001a, Avila *et al* 2001b).

2.5.1 Sistema amortecido

Considere o sistema de N graus de liberdade com um amortecedor de massa sintonizado (AMS) instalado no último andar apresentado anteriormente na Figura (2.3). Admitindo-se que este sistema vibre predominantemente em torno de um único modo ele pode ser reduzido a um sistema de somente dois graus de liberdade, mostrado na Figura (2.25), conforme procedimento descrito anteriormente no ítem 2.3.2.

Figura 2.25 – Sistema de dois graus de liberdade

Admitindo-se que o AMS possua uma rigidez com não-linearidade cúbica, as equações de movimento, desta feita, podem ser escritas na forma

$$(M+m)\ddot{y}_{1}(t) + m \ \dot{y}_{2}(t) + C \dot{y}_{1}(t) + Ky_{1}(t) = f(t)$$
(2.23)

$$m y_1(t) + m y_2(t) + c y_2(t) + k y_2(t) + \beta' y_2(t)^3 = 0$$
(2.24)

onde β ' é a magnitude da não-linearidade cúbica presente na equação.

O método do balanço harmônico (Nayfeh & Mook, 1979) sugere que a solução destas equações, isto é a resposta amortecida do sistema, pode ser expressa de forma aproximada como sendo

$$y_1 = \sum_{i=1}^{\infty} A_n \operatorname{sen}(n\omega t) + B_n \cos(n\omega t)$$
(2.25)

$$y_2 = \sum_{i=1}^{\infty} C_n \operatorname{sen}(n\omega t) + D_n \cos(n\omega t)$$
(2.26)

Utilizando-se apenas o primeiro modo para solução do sistema, inicialmente, substituem-se (2.25) e (2.26) em (2.23), obtendo-se

$$(M + m)(-A1\sin(\omega t)\omega^{2} - B1\cos(\omega t)\omega^{2}) + m(-C1\sin(\omega t)\omega^{2} - D1\cos(\omega t)\omega^{2} + C(A1\cos(\omega t)\omega - B1\sin(\omega t)\omega) + K(A1\sin(\omega t) + B1\cos(\omega t)) = Fsin(\omega t)$$

$$(2.27)$$

Isolando-se os termos que multiplicam $sin(\omega t) = cos(\omega t)$ obtém-se o seguinte sistema de equações lineares em A1 e B1

$$-(M+m)A1\omega^{2} - mC1\omega^{2} - CB1\omega + KA1 = F$$
(2.28)

$$-(M+m)B1\omega^{2} - mD1\omega^{2} - CA1\omega + KB1 = 0$$
(2.29)

cuja solução fornece as amplitudes A1 e B1 em termos de C1 e D1

$$A1 = -\frac{\omega^4 MmC1 + \omega^2 MF + \omega^4 m^2 C1 + \omega^2 mF - KmC1\omega^2 - KF - mD1\omega^3 C}{\omega^4 M^2 + 2\omega^4 Mm - 2\omega^2 MK + K^2 + C^2 \omega^2}$$
(2.30)
$$B1 = -\frac{\omega(-KmD1\omega + \omega^3 m^2 D1 + mC1\omega^2 C + \omega^3 MmD1 + FC)}{\omega^4 M^2 + 2\omega^4 Mm - 2\omega^2 MK + K^2 + C^2 \omega^2}$$
(2.31)

Em seguida, substituindo as soluções (2.25) e (2.26) na equação (2.24), obtém-se

$$\frac{m(\omega^{4}Mm\Omega + \omega^{2}MF + \omega^{4}m^{2}C1 + \omega^{2}mF - Km\Omega\omega^{2} - KF - mD\omega^{3}C)sin(\omega t)\omega^{2}}{\omega^{4}M^{2} + 2\omega^{4}Mm - 2\omega^{2}MK + K^{2} + C^{2}\omega^{2}} + \frac{m(\omega^{3}(-KmD\omega + \omega^{3}m^{2}D1 + mC\omega^{2}C + \omega^{3}MmD + FC)cos(\omega t))}{\omega^{4}M^{2} + 2\omega^{4}Mm - 2\omega^{2}MK + K^{2} + C^{2}\omega^{2}} + m(-Clsin(\omega t)\omega^{2} - D1cos(\omega t)\omega^{2}) + c(Clcos(\omega t)\omega - Dlsin(\omega t)\omega) + k(Clsin(\omega t) + Dlcos(\omega t)) + \beta'(Clsin(\omega t) + Dlcos(\omega t))^{3} = 0$$

$$(2.32)$$

Descartando-se os termos em sen $(n\omega t)$ e $\cos(n\omega t)$ com n > 1, obtém- (2.33) se os termos não-lineares

$$\beta'\left(\left(\frac{3}{4}C1^3 + \frac{3}{2}C1D1^2\right)\sin(\omega t) + \left(\frac{3}{2}C1^2D1 + \frac{3}{4}D1^3\right)\cos(\omega t)\right)$$

Ao se isolar os termos que multiplicam $sen(\omega t)$ e $cos(\omega t)$, obtém-se o sistema de duas equações não-lineares formado pelas equações (2.34) e (2.35) cuja solução fornece as amplitudes *C*1 e *D*1 da resposta no tempo (2.26). Para sua solução pode-se utilizar o método numérico de Newton-Raphson (Smith & Griffiths 1991)

$$\frac{m\left(\omega^{4} MmC 1 + \omega^{2} MF + \omega^{4} m^{2} C1 + \omega^{2} mF - KmC 1\omega^{2} - KF - mD 1\omega^{3} C\right)}{\omega^{4} M^{2} + 2\omega^{4} Mm - 2\omega^{2} MK + K^{2} + C^{2} \omega^{2}}$$
(2.34)
$$- mC 1\omega^{2} - cD 1\omega + kC 1 + \beta' \left(\frac{3}{4} C1^{3} + \frac{3}{2} C1D 1^{2}\right) = 0$$

$$\frac{m\omega^{3} \left(-kmD1\omega + \omega^{3}m^{2}D1 + mC1\omega^{2}C + \omega^{3}MmD1 + FC\right)}{\omega^{4}M^{2} + 2\omega^{4}Mm - 2\omega^{2}MK + K^{2} + C^{2}\omega^{2}} - mD1\omega^{2} + cC1\omega + kD1 + \beta' \left(\frac{3}{2}C1^{2}D1 + \frac{3}{4}D1^{3}\right) = 0$$
(2.35)

Cabe ressaltar que esta solução aproximada, obtida a partir do método do balanço harmônico, só apresenta bons resultados para pequenos valores do parâmetro não-linear β , ou seja, sistemas quase lineares. A medida que a não-linearidade aumenta mais termos devem ser usados nas expansões (2.25) e (2.26).

2.5.2 Sistema não-amortecido

Considere agora o sistema da Figura (2.25) com amortecimento nulo para ambas as massas, as equações (2.23) e (2.24) reduzem-se a

$$(M+m)\ddot{y}_1(t) + m\ddot{y}_2(t) + Ky_1(t) = f(t)$$
(2.36)

$$m y_1(t) + m y_2(t) + k y_2(t) + \beta' y_2(t)^3 = 0$$
(2.37)

e as soluções do sistema são aproximadas agora por

$$y_1 = A1 \operatorname{sen}(\omega t) \tag{2.38}$$

$$y_2 = B1 \operatorname{sen}(\omega t) \tag{2.39}$$

Substituindo-se (2.38) e (2.39) em (2.36), tem-se

$$-(M+m)A1\sin(\omega t)\omega^2 - mB1\sin(\omega t)\omega^2 + KA1\sin(\omega t) = F\sin(\omega t)$$
(2.40)

de onde obtém-se a amplitude da resposta A1

$$A1 = \frac{mB1\omega^2 + F}{-\omega^2 M - \omega^2 m + K}$$
(2.41)

Em seguida, substitui-se (2.38) e (2.39) em (2.37), chega-se a

$$\frac{m(mB1\omega^{2} + F)sin(\omega t)\omega^{2}}{\omega^{2}M + \omega^{2}m - K} - mB1sin(\omega t)\omega^{2} + kB1sin(\omega t) + + \beta'B1^{3}sin(\omega t)^{3} = 0$$
(2.42)

Sabendo-se que

$$\sin(\omega t)^{3} = -\frac{1}{4}\sin(3\omega t) + \frac{3}{4}\sin(\omega t)$$
(2.43)

e desprezando-se os termos em sen $(3\omega t)$ chega-se à seguinte equação não-linear em termos de *B*1

$$\frac{mB1\omega^2 + F}{-\omega^2 M - \omega^2 m + K} - mB1\omega^2 + kB1 + \frac{3}{4}\beta'B1^3 = 0$$
(2.44)

Para solução da equação (2.44), por se tratar de uma equação não-linear, lança-se mão de técnicas numéricas como por exemplo, o método de Newton-Raphson.

2.5.3 Exemplo numérico

Considere inicialmente um sistema de dois graus de liberdade nãoamortecido seguintes propriedades: M=506617.43 com as Kg; K = 5.1045 MN/m; m = 18639.0 Kg; k = 0.188 MN/m, oriundas da análise através da técnica da redução modal realizada com o shear-frame de dez andares estudado no exemplo (2.2). Vale ressaltar que as propriedades da estrutura principal foram reduzidas em 15% para a presente análise, tornando assim a mesma mais leve e esbelta. Admita que o sistema está submetido a uma excitação harmônica com $f(t) = F \operatorname{sen}(\omega t)$ e F = 1.0 kN. A Figura (2.26) apresenta a curva de resposta em freqüência da amplitude da resposta da massa M, A_1 , que representa o edifício, nos seguintes casos:

a) estrutura sem controle;

b) $\beta = 0.0$ (controle linear);

c) $\beta = -1.0 \text{ N/m}^3$ (controle não-linear – pequena não-linearidade).

Verifica-se que a não-linearidade do AMS além de influenciar de forma acentuada o comportamento do mesmo, afeta o comportamento do edifício cuja curva de resposta em freqüência passa a ser não-linear sofrendo uma distorção, inclinando-se para a esquerda. Este tipo de comportamento era esperado, já que a não-linearidade leva a um decréscimo da rigidez efetiva com o aumento da amplitude da oscilação (não linearidade do tipo *softening*). Entretanto, é importante apontar que, mesmo sendo a rigidez não linear apenas uma pequena fração da rigidez linear, já se tem uma forte transferência de efeitos não lineares do AMS para o edifício. Nota-se também que em certas faixas de freqüência a amplitude do sistema não-linear é inferior a do sistema linear controlado, o que indica uma maior eficiência do mecanismo não-linear nestas regiões. Entretanto, na região onde se situa o pico de ressonância do sistema não-controlado, ambos os absorsores apresentam resultados semelhantes.

Em seguida a Figura (2.27) apresenta as curvas de resposta em freqüência da amplitude da resposta da massa m_2 , que representa o AMS, B1, ao se variar o valor de β , ainda dentro de uma faixa de baixa não-linearidade. Pode-se observar que o aumento na magnitude da não-linearidade causa um decréscimo na amplitude B1 do movimento do amortecedor em toda a região pesquisada, o que é, a princípio, benéfico para o projeto do AMS.

Figura 2.26 - Curva de resposta em freqüência do edifício

Figura 2.27 – Resposta em freqüência do AMS variando-se β

As Figuras (2.28) apresentam as respostas em freqüência do edifício e do AMS variando-se o sinal de β . Pode-se perceber que o mesmo determina para que lado ocorre a distorção da curva de resposta em freqüência causada pela nãolinearidade. Nota-se no caso de não-linearidade com perda de rigidez ($\beta = -3.0$) que o número de soluções reais do sistema não-linear é bem maior que no caso de não-linearidade com ganho de rigidez ($\beta = +3.0$). A princípio esta multiplicidade de soluções não é benéfica, já que pode gerar saltos dinâmicos em caso de variação da freqüência da excitação na faixa considerada. Entretanto, conclusões mais fundamentadas só podem ser obtidas quando se analisa o comportamento do sistema amortecido, já que o amortecimento elimina certos ramos da solução não-linear.

Figura 2.28 – Resposta em freqüência do edifício e do AMS variando-se o sinal de β

Considerando-se agora o efeito do amortecimento no sistema, a Figura (2.29) mostra a resposta linear ($\beta = 0.0$) em freqüência do edifício para vários níveis de amortecimento. Verifica-se que o amortecimento causa uma diminuição acentuada na amplitude.

Figura 2.29 – Resposta em freqüência do edifício para vários níveis de amortecimento ($\beta = 0.0$)

Para o cálculo do sistema não-linear amortecido, resolveu-se obter a resposta do problema integrando-se as equações não-lineares numericamente e obter-se a resposta no domínio da freqüência através do traçado de diagramas de bifurcação. Isto permite a análise do sistema sem que precise se fazer restrições sobre a magnitude da não-linearidade e do amortecimento.

A seguir são apresentados digramas de bifurcação do sistema não-linear amortecido. Estes diagramas mostram como os pontos fixos do mapa de Poincaré variam com a freqüência. Estes pontos são obtidos através de algoritmos numéricos conhecidos como métodos da Continuação e da Força Bruta. No caso do método da continuação a estabilidade da resposta permanente é analisada através da teoria de Floquet. Maiores informações sobre estes algoritmos, sobre o mapeamento de Poincaré e sobre a estabilidade de soluções não-lineares podem ser encontrados em Nayfeh & Balanshandran (1995), Allgower & Georg (1990) e del Prado (2001). A Figura (2.30) apresenta os diagramas de bifurcação do deslocamento e da velocidade para o caso linear com um nível de amortecimento C = 64324.3 Ns/m e c = 24000.0 Ns/m, utilizado anteriormente no exemplo (2.2) sendo que C também foi reduzido em 15%, para acentuar o efeito da nãolinearidade da resposta.

Figura 2.30 – Diagramas de bifurcação da resposta linear (β = 0.0) do edifício e do AMS

Nas Figuras (2.31) apresentam-se os casos da resposta não-linear utilizando $\beta = +10^4$ N/m³. Este valor do parâmetro não-linear, bem maior que os estudados anteriormente, ainda representa uma pequena fração da rigidez linear. Observando-se os diagramas de bifurcação nota-se que, certas coordenadas dos pontos fixos se anulam para determinadas freqüências. Vale ressaltar aqui que não se trata da amplitude da resposta se anular para estas freqüências e sim o valor do ponto fixo. Isso se ilustra na evolução da resposta no tempo e no plano fase correspondentes às freqüências $\omega = 3.063934$ rad/s e $\omega = 3.176173$ rad/s apresentadas nas Figuras (2.32) a (2.35). Como os diagramas de bifurcação não apresentam a amplitude máxima da resposta, não se pode comparar diagramas para sistemas distintos quando se deseja inferir a eficiência do controle.

Para valores positivos de β obteve-se sempre um comportamento estável ao longo de toda a faixa de freqüência analisada, com a periodicidade da resposta sendo igual à periodicidade da força, como ocorre no problema linear.

Figura 2.31 – Diagramas de bifurcação da resposta não-linear com β positivo (β = +10⁴ N/m³) do edifício e do AMS

Figura 2.32 – Evolução do deslocamento do AMS para ω = 3.063934 rad/s

Figura 2.33 – Plano fase do AMS para ω = 3.063934 rad/s

Figura 2.34 – Evolução da velocidade do edifício para ω = 3.176173 rad/s

Figura 2.35 – Plano fase do edifício para ω = 3.176173 rad/s

Pode-se perceber que no caso do β negativo ($\beta = -10^4 \text{ N/m}^3$) cujos diagramas estão apresentados nas Figuras (2.36) o algoritmo da continuação não foi capaz de obter toda a curva, o mesmo ocorrendo com o algoritmo da força bruta cujos diagramas obtidos estão apresentados nas Figuras (2.37). Observa-se nestes diagramas pequenas janelas e descontinuidades, indicando uma possível instabilidade do sistema. Para o traçado dos diagramas com estas descontinuidades implementou-se um critério de parada no algoritmo, quando este atingisse determinada magnitude.

A fim de verificar o efeito do nível de amortecimento nos diagramas de bifurcação reduziu-se o mesmo em 50% (c_1 = 32165.15 Ns/m e c_2 = 12000.0 Ns/m). A Figura (2.38) apresenta os diagramas obtidos pelo método da continuação. Observa-se que novamente não foi possível obter toda a curva usando-se o método da continuação que só é capaz de identificar respostas periódicas (estáveis e instáveis) até certo nível de periodicidade. Cabe observar que, neste caso, alguns dos trechos obtidos são instáveis. Através dos diagramas obtidos com o método da força bruta apresentados na Figura (2.39) isso pode ser confirmado, verificando-se o surgimento de uma nuvem de pontos, representando soluções aperiódicas estáveis, nestes trechos.

Figura 2.36 – Diagramas de bifurcação da resposta não-linear com β negativo (β = -10⁴) do edifício e do AMS obtidos através do algoritmo da continuação

Figura 2.37 – Diagramas de bifurcação da resposta não-linear com β negativo (β = -10⁴) do edifício e do AMS obtidos através do algoritmo da força bruta

Figura 2.38 – Diagramas de bifurcação da resposta não-linear do edifício e do AMS com β negativo (β = -10⁴N/m³) (c_1 = 32165.15 Ns/m e c_2 = 12000.0 Ns/m) utilizando o método da continuação

Figura 2.39 – Diagramas de bifurcação da resposta não-linear do edifício e do AMS com β negativo (β = -10⁴N/m³) (c_1 = 32165.15 Ns/m e c_2 = 12000.0 Ns/m) utilizando o método da Força Bruta

Com o objetivo de verificar o comportamento do sistema nos trechos estáveis e instáveis obteve-se a resposta no tempo, através do algoritmo de Runge-Kutta, para as seguintes freqüências de excitação: $\omega_1 = 2.500335$ rad/s (trecho estável), $\omega_2 = 2.750135$ rad/s (trecho instável), $\omega_3 = 2.700144$ rad/s (trecho instável) e $\omega_4 = 2.810040$ rad/s (trecho estável). Foram gerados para cada freqüência o plano fase, a seção de Poincaré e a resposta no tempo para o edifício e o AMS, estes gráficos são mostrados nas Figuras (2.40) a (2.51).

Verificou-se que para as freqüências $\omega_1 = 2.500335$ rad/s e $\omega_4 = 2.810040$ rad/s, correspondentes às regiões estáveis, o plano fase é uma órbita fechada e a seção de Poincaré apenas um ponto confirmando a estabilidade e periodicidade da solução encontrada nos algoritmos de continuação e de força bruta. Já para freqüências que se encontram em regiões instáveis ($\omega_2 = 2.500335$ rad/s e $\omega_3 = 2.810040$ rad/s) o plano fase e a seção de Poincaré apresentaram características de soluções quase periódicas, este tipo de solução caracteriza-se por uma ou mais freqüências incomensuráveis. Duas freqüências $\omega_1 e \omega_2$ são ditas incomensuráveis se ω_1/ω_2 for um número irracional. Na prática, devido à dificuldade de determinar se a razão entre dois valores medidos é racional ou

irracional, um espectro correspondente a uma função quase periódica seria semelhante ao de uma função periódica com um período muito longo (Nayfeh & Balachandran, 1995).

Figura 2.40 - Plano Fase e Seção de Poincaré para ω_1 = 2.500335 rad/s

Figura 2.41 - Resposta no tempo do deslocamento do edifício (ω_1 = 2.500335 rad/s)

Figura 2.42 - Evolução no tempo dos deslocamentos do edifício e do AMS e da força excitadora (ω_1 = 2.500335 rad/s)

Figura 2.43 - Plano Fase e Seção de Poincaré para ω_2 = 2.700144 rad/s

Figura 2.44 - Resposta no tempo do deslocamento do edifício (ω_2 = 2.700144 rad/s)

Figura 2.45 - Evolução no tempo dos deslocamentos do edifício e do AMS e da força excitadora (ω_2 = 2.700144 rad/s)

Figura 2.46 – Plano Fase e Seção de Poincaré para ω_3 = 2.750135 rad/s

Figura 2.47 – Resposta no tempo do deslocamento do edifício (ω_3 = 2.750135 rad/s)

Figura 2.48 – Evolução no tempo dos deslocamentos do edifício e do AMS e da força excitadora (ω_3 = 2.750135 rad/s)

Figura 2.49 – Plano Fase e Seção de Poincaré para ω_4 = 2.810040 rad/s

Figura 2.50 – Resposta no tempo do deslocamento do edifício (ω_4 = 2.810040 rad/s)

Figura 2.51 – Evolução no tempo dos deslocamentos do edifício e do AMS e da força excitadora (ω_4 = 2.810040 rad/s)

A fim de complementar esta análise foram calculados os expoentes de Lyapunov para as freqüências analisadas. Os expoentes de Lyapunov podem ser utilizados para determinar a sensibilidade a condições iniciais e processos de perda de estabilidade (divergência) de soluções caóticas, quase periódicas e soluções periódicas (Parker & Chua, 1989). Quando todos os expoentes são negativos o atrator é um ponto fixo estável, no caso de um ciclo limite de um sistema autônomo um dos expoentes de Lyapunov é sempre nulo. Em movimentos caóticos um ou mais expoentes são positivos (Nayfeh & Balachandran, 1995). A Figura (2.52) apresenta a convergência dos expoentes de Lyapunov para cada uma das freqüências analisadas e a Tabela (2.8) mostra os valores dos mesmos calculados segundo procedimento descrito em del Prado (2001). Verifica-se novamente segundo a análise dos expoentes de Lyapunov a estabilidade e instabilidade das respostas obtidas anteriormente através do algoritmo da continuação.

ω (rad/s)	λ'1	λ'2	λ'3	λ'4
2.500335	-0.5984	-0.6056	-0.7246	-0.7304
2.700144	0.0564	-0.1029	-1.0217	-1.3859
2.750135	0.0682	0.0010	-1.2145	-1.2641
2.810040	-0.0286	-0.0482	-1.1354	-1.1459

Tabela 2.8 – Expoentes de Lyapunov para diversas freqüências estudadas

Finalmente, obteve-se a resposta no tempo em uma freqüência localizada na região a qual não foi possível "fechar" a curva, a evolução no tempo dos deslocamentos da massa principal e AMS estão apresentados na Figura (2.53). Observa-se que trata-se de uma região extremamente instável já que a resposta diverge rapidamente.

Os resultados aqui apresentados mostram que a não-linearidade, presente em muitos mecanismos de controle passivo, tem uma grande influência na resposta do sistema. Es alguns casos notou-se um efeito benéfico, com diminuição de amplitudes em certos trechos. Em outros casos, em particular em sistemas com perda de rigidez, observou-se que a não-linearidade pode ter um efeito bastante nocivo, causando o aparecimento de saltos, descontinuidades e respostas instáveis.

Figura 2.52 – Gráficos da convergência dos expoentes de Lyapunov para as diversas freqüências estudadas

Figura 2.53 – Evolução dos deslocamentos do edifício e do AMS numa freqüência na região "aberta" da curva (ω = 3.15 rad/s)